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Geometry based analysis of 3R serial
robots

Durgesh Salunkhe, Jose Capco, Damien Chablat, Philippe Wenger

Abstract Cuspidal robots can travel from one inverse kinematic solution
(IKS) to another without meeting a singularity. This property can be an-
alyzed by understanding the inverse kinematic model (IKM) as well as the
singularities in the joint space and in the workspace. In this article, we revisit
the geometrical interpretation of the IKM with conics. The conditions of get-
ting different conics and their implication on singularities are discussed and
the observations regarding the nature of the conics are presented. Further,
a sufficient condition for a 3R robot to be binary (i.e. with up to 2 IKS)
as well as quaternary (i.e. with up to 4 IKS) is put forth by analyzing the
geometrical interpretation of the IKM. The possibility to derive a necessary
and sufficient condition is presented too.

1 Introduction

Cuspidal robots can travel from one inverse kinematic solution (IKS) to an-
other without encountering a singularity. For these robots, posture identifi-
cation is very difficult [1], which makes the task of trajectory planning more
challenging [2]. It is known that a 3R robot can have at most four IKS, and it
is generally preferred to choose a robot geometry that maximizes the size of
regions with four IKS. This allows an end-user to choose IKS from different
regions to counter the collision issues in the workspace. Robots that have 4
IKS regions in their workspace are referred to as quaternary robots, while
robots that have at most 2 IKS are referred to as binary robots [3]. It is im-
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portant to note that though quaternary robots have their advantages, they
can be cuspidal too, while on the other hand binary robots cannot be cuspidal
[1]. A particular class of 3R robots, orthogonal 3R robots, have been studied
extensively. These robots have three mutually orthogonal joint axes. A D-H
parameter based condition for an orthogonal 3R robot to be quaternary was
provided by algebraic analysis in [3]. An extension of such an analysis to
non-orthogonal 3R robots is more challenging, and no conditions for binary
or quaternary non-orthogonal robots have been reported yet. Recently, the
cuspidality of generic 3R robots was analyzed by using a geometric inter-
pretation of the inverse kinematic model (IKM) [4]. This work studied the
intersection of a conic with a unit circle and derived important observations
regarding the existence of reduced aspects as well as the necessary condition
for cuspidality in generic 3R robots. The presented work reports few more
properties of the conic and its implication on the maximum number of IKS
in the workspace. The classification presented provides a simple and clear
geometric interpretation for the condition of binary and quaternary robots.
This work can be extended to have a necessary and sufficient condition for
a generic 3R robot to be quaternary. The following work is divided into
three sections: Section 2 revisits the geometrical interpretation of the inverse
kinematics of 3R robots and singularities. This section also discusses the clas-
sification of 3R robots based on the geometry of the IKM as well as discusses
the implication of the same in joint space and workspace. Section 3 shows a
case of binary and quaternary robot by analyzing the geometrical properties
of the IKM. Section 4 concludes the work by discussing the implications of
the contribution and addressing a few pointers to future work.

2 Inverse kinematic model

Let x = (𝑥, 𝑦, 𝑧) be the vector of coordinates of the robot’s end effector in
the workspace W ⊂ R3 at a configuration q = (𝜃1, 𝜃2, 𝜃3) in the joint space
J = 𝑆1 × 𝑆1 × 𝑆1. The mapping between J and W, denoted by 𝑓 : J → W,
defines the direct kinematics: x = 𝑓 (q), x ∈ W, q ∈ J . The elements in the
preimage 𝑓 −1 (x) are the IKS of x. A robot configuration associated with an
IKS is called a posture.

Solving the inverse kinematics of 3R serial robots was first reported in [5]
where it was noted that the solutions correspond to the intersection of a
conic with a circle in 𝑐3𝑠3-plane, where 𝑐3 and 𝑠3 denote cos 𝜃3 and sin 𝜃3,
respectively. Using the classical D-H parameters to describe the geometry of
the robot (see [4]), the solution to the IKM is revisited briefly. Let, 𝑅 = 𝜌2+𝑧2,
where 𝜌2 = 𝑥2 + 𝑦2 = 𝑔(𝜃2, 𝜃3). The terms 𝑅 and 𝑧 can be written as

𝑅 = (𝐹1 cos 𝜃2 + 𝐹2 sin 𝜃2) 2𝑎1 + 𝐹3

𝑧 = (𝐹1 sin 𝜃2 − 𝐹2 cos 𝜃2) sin 𝛼1 + 𝐹4
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Fig. 1: D-H convention used and a schematic of a 3R serial robot

where 𝐹𝑖 = 𝑔𝑖 (𝜃3), for 𝑖 = 1, .., 4. Upon rearrangement, we obtain the general
equation of a conic in 𝑐3𝑠3-plane as given in (1).

𝐴𝑥𝑥 𝑐
2
3 + 2𝐴𝑥𝑦 𝑐3𝑠3 + 𝐴𝑦𝑦 𝑠

2
3 + 2𝐵𝑥 𝑐3 + 2𝐵𝑦 𝑠3 + 𝐶 = 0 (1)

The coefficients of the conic are skipped for brevity, but they are functions
of the D-H parameters and of, (𝑅, 𝑧) as shown in (2),

𝐴𝑥𝑥 , 𝐴𝑥𝑦 , 𝐴𝑦𝑦 = 𝑓1 (𝑎1, 𝑎2, 𝑎3, 𝑑2, 𝛼1, 𝛼2)
𝐵𝑥 , 𝐵𝑦 , 𝐶 = 𝑓2 (𝑎1, 𝑎2, 𝑎3, 𝑑2, 𝑑3, 𝛼1, 𝛼2, 𝑅, 𝑧)

(2)

The inverse kinematic solutions are defined by the intersection points be-
tween the conic (1) and the unit circle 𝑐2

3 + 𝑠2
3 = 1 in 𝑐3𝑠3-plane. This conic

can be a hyperbola, parabola or an ellipse depending on the D-H parameters.
An example of each one is shown in Fig. 2.

Performing the tangent half-angle substitution, 𝑡 = tan 𝜃3
2 , we get a quartic

inverse kinematic polynomial 𝑀 (𝑡) = 𝑎𝑡4 + 𝑏𝑡3 + 𝑐𝑡2 + 𝑑𝑡 + 𝑒 similar to the one
mentioned in [6]. The coefficients of 𝑀 (𝑡) are functions of the D-H parameters
and of 𝑅 and 𝑧. The solutions to the polynomial equation, 𝑀 (𝑡) = 0, are the
intersection points between the conic and the circle and are labeled as m𝜓,
where 𝜓 ∈ {𝑖, 𝑗 , 𝑘, 𝑙} in the 𝑐3𝑠3-plane.
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Fig. 2: The conic and unit circle in 𝑐3𝑠3-plane for robots with different 𝛼 parameters
and at different points.
Robot parameters (left): 𝑑 = [0, 1, 0], 𝑎 = [1, 2, 3

2 ], 𝛼 = [ 𝜋
2 ,

𝜋
6 , 0], (𝜌, 𝑧) = (2.46, 0.15)

(center): 𝑑 = [0, 1, 0], 𝑎 = [1, 2, 3
2 ], 𝛼 = [ 𝜋

3 ,
𝜋
2 , 0], (𝜌, 𝑧) = (2.33, −0.26)

(right): 𝑑 = [0, 1, 0], 𝑎 = [1, 2, 3
2 ], 𝛼 = [ 𝜋

6 ,
𝜋
2 , 0], (𝜌, 𝑧) = (2.4, 0.6).

2.1 Singularities

It has been reported in [6] that the singularities in the workspace correspond
to all the points where the root multiplicity of 𝑀 (𝑡) = 0 is greater than or
equal to 2. Their geometric interpretation in the conic is two intersection
points, m𝑖 ,m 𝑗 , merging together at a tangent point between the conic and
the circle.
The nonsingular change of posture in cuspidal robots relates to two inter-
section points interchanging their position, with at least one of them not
meeting any other intersection point [4]. This interpretation is also helpful
to understand why binary robots are compulsorily noncuspidal. It has been
shown in [4] that the orientation of the conic remains constant. Thus, if we
have only two intersection points, then they cannot interchange their position
without meeting each other at a tangent point.

2.2 Degenerate conic

The nature of the conic depends on the sign of the determinant of N, where N
is the Hessian of the conic. The degeneracy of a conic is given by det(D) = 0,
where D is the Hessian of the quadratic form. We know that the hyper-
bola (det(N) < 0) degenerates into two intersecting lines, while the ellipse
(det(N) > 0) degenerates to a point. The degenerate case of a parabola is
of particular interest as it degenerates to two parallel lines, and they can be
distinct or coincident. The presented work discusses the case when a parabola
degenerates to two coincident lines, resulting in two multiple roots. This case
is important to analyze as this is a special degeneracy case, and it is expected
to show a special property in the workspace too. Following are the conditions
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for a parabola to degenerate into two coincident lines:
det(N) = 0
det(D) = 0
𝐵2
𝑥 + 𝐵2

𝑦 − (𝐴𝑥𝑥 + 𝐴𝑦𝑦) 𝐶 = 0
(3)

Solving det(N) = 0 for 𝑑2 yields:

𝑑2 = ±
√
(𝑎1 + 𝑎2) (𝑎1 − 𝑎2) (𝑠𝑎1 − 𝑠𝑎2) (𝑠𝑎1 + 𝑠𝑎2)

𝑠𝑎1 𝑠𝑎2
(4)

We conclude that the parameters 𝑎3 and 𝑑3 do not play any role to define a
parabola. Upon substituting any value from (4) into det(D) = 0 and solving
for 𝑅, we obtain the same solution. Solving the last equation in (3) for 𝑧,
the solutions 𝑅 and 𝑧 take the following form, provided that 𝑐𝑎2 ≠ 0 and
𝑠𝑎1 ≠ 𝑠𝑎2:

𝑅 =
𝑓 (𝑧)

𝑠𝑎2
1 − 𝑠𝑎2

2

𝑧 =
𝑐𝑎1
𝑐𝑎2

(𝑑3 𝑠𝑎1 𝑠𝑎2 + 𝑑2 𝑐𝑎2)
(5)

From (5), it is interesting to note that a robot such that (𝑐𝑎2 ≠ 0, 𝑠𝑎1 ≠ 𝑠𝑎2)
and corresponding to a parabola will always have a point in the workspace
(𝑅, 𝑧) such that its geometric interpretation is a parabola degenerating into a
coincident line. When 𝑐𝑎2 = 0 (resp. 𝑠𝑎1 = 𝑠𝑎2), 𝑧 (resp. 𝑅) is indeterminate.
A point satisfying (5) is a tangency point between two loci of critical values,
as shown in Fig.3.
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Fig. 3: Degenerate parabola case: joint space (center) and workspace (right). The point
shown in red is associated with two coincident lines in the 𝑐3𝑠3-plane (left).
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6
,
𝜋

3
, 0], (𝜌, 𝑧) =

(1.471, 3.315).



6 Durgesh Salunkhe, Jose Capco, Damien Chablat, Philippe Wenger

3 Special classes of robots

In this section, we present a sufficient condition for a 3R robot to be binary
and quaternary, respectively. The motivation for the search of binary robots
comes from the well-known property that two circles have at most two distinct
intersections. Section 3.1 discusses the neighbourhood of such binary robots.
We claim that the parameters corresponding to all the ellipses that are in a
sufficiently small neighbourhood of the parameters corresponding to a circle,
also result in binary robots. Section 3.2 discusses a condition for a hyperbola
to compulsorily have four intersections with the unit circle in the 𝑐3𝑠3-plane,
thus resulting in a quaternary robot.

3.1 Binary robots

We now consider a robot such that its associated conic is an ellipse. We prove
that if the ellipse is almost a circle, then many of these robots are binary. We
consider a Lemma in Geometry whose proof is straightforward and thus not
presented in the text:

Lemma 1 Consider the unit circle 𝑆1 and a number, 𝑒 ∈ (0, 1)
(i) There is an ellipse C with eccentricity 𝑒 such that #C ∩ 𝑆1 = 4

(ii) As 𝑒 → 0 the ellipses with eccentricity 𝑒 with property (i) will have centers
that approach the origin (center of 𝑆1) and have minor and major semi-
axes that approach length 1.

We now make an important remark that was not emphasized in [4]: given a
robot, the eccentricity of its associated conic is fixed. Indeed, the eccentricity
is only dependent on the entries of N (see [4, 5]), and these entries only
depend on the D-H parameters of the robot and not on the position of the
end-effector, as shown in (2). By combining this observation along with the
lemma, we can prove the following theorem:

Theorem 1 There are infinitely many binary robots whose associated conic
is an ellipse (that is not a circle).

Proof We claim that it suffices to have one binary generic robot with this
condition. The associated ellipse for such a robot will never degenerate, and
so the minor and major axes must achieve their (non-zero) minimum values.
From previous Lemma, these lengths must lie in an interval 𝐼 ⊂ R centered
at 1 (radius of an ellipse) for the ellipse to intersect the unit circle four times
and for a fixed sufficiently small eccentricity 𝑒. If a generic binary robot is
given with an associated ellipse of eccentricity 𝑒, then the minimum major
(or minor) axes (recall the axes’ length now depends on the end-effector
position) is outside 𝐼. This minimum value is not in the boundary of 𝐼 and
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is continuously dependent on the D-H parameters. One parameter that does
not affect the eccentricity but does affect the minimum major/minor axes’
length is 𝑑3. So we may perturb 𝑑3 within a small interval of 𝑑3 of the given
binary robot and still obtain a binary robot.

To conclude the proof, we give an example of a binary robot whose asso-
ciated conic is an ellipse. The D-H parameters of this robot are:

𝑎 = [−1503
1879

,−1,−1] 𝑑 = [0, 0, 3] 𝛼 = [−2.21, −𝜋
2
, 0]

-2 -1 0 1 2
-2

-1

0

1

2

𝑠3

𝑐3
−𝜋 −𝜋

2 0 𝜋
2 𝜋

−𝜋

−𝜋
2

0

𝜋
2

𝜋

𝜃2

𝜃3

0 1 2 3 4

-4

-2

0

2

4

𝜌 =
√
𝑥2 + 𝑦2

𝑧

Fig. 4: An example of a binary robot’s representation in 𝑐3𝑠3 − 𝑝𝑙𝑎𝑛𝑒, the joint space
and the workspace.
Robot parameters: 𝑑 = [0, 0, 3], 𝑎 = [−1503

1879
, −1, −1], 𝛼 = [−2.21, −𝜋

2
, 0].

As the eccentricity of the associated ellipse approaches 0 (the ellipse be-
comes more like a circle) we will get more such binary robots. However, we
will always be able to find a robot that is quaternery for such an eccentricity
(as long as it is not 0). This is a conjecture that we aim to prove in the future.

3.2 Quaternary robot

In this subsection, we discuss the case of a 3R robot such that the hyperbola
degenerates and the center of the conic is inside the circle. It is straightforward
to argue why such a robot is compulsorily quaternary. If the intersecting
lines have their intersection point inside a circle, then each line will intersect
the circle twice, thus yielding four intersection points in total. If 𝑐𝑥 , 𝑐𝑦 is
the center of the conic in the 𝑐3𝑠3-plane, then the sufficient condition for a
quaternary robot is:
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det(N) < 0
det(Q) = 0√
𝑐2
𝑥 + 𝑐2

𝑦 < 1
(6)

To illustrate the simplicity of the derivation of the sufficient condition, we
present a case of orthogonal 3R robots (see an example in 5).

det(N) = −
𝑎4

3 𝑑
2
2

𝑎2
1

det(Q) =
𝑎4

3 𝑑
2
2 (𝑑2

3 − 𝑧2)
𝑎2

1

𝑐2
𝑥 + 𝑐2

𝑦 =
𝑎𝑅2 + 𝑏𝑅 + 𝑐

4 𝑑2
2 𝑎

2
3

(7)

In (7), 𝑎 and 𝑏 are functions of the D-H parameters only and are not ex-
pressed fully for brevity. It is clear from (7) that an orthogonal 3R robot
always corresponds to a hyperbola in 𝑐3𝑠3-plane. The condition for degener-
acy depends only on 𝑑3 and 𝑧 while the condition for the center of the conic
to lie inside the circle is a quadratic in 𝑅. It is important to note that the
degeneracy depends only on 𝑧 and not on 𝑅 and thus, for 𝑧 = 𝑑3, the conic is
always degenerate. This property also leads to some interesting observations
about the hyperbolas corresponding to an orthogonal 3R robot but are not
discussed here for lack of space.
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Fig. 5: An example of an orthogonal quaternary robot corresponding to an hyperbola.
Robot parameters : 𝑑 = [0, 1, 2], 𝑎 = [1, 2, 3], 𝛼 = [ −𝜋2 , 𝜋

2 , 0], (𝜌, 𝑧) = (2, 2).
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4 Conclusions and future work

In this work, we have revisited the geometric interpretation of the inverse
kinematic model of 3R robots. The interpretation of singularities as well as
the nonsingular change of posture have been briefly introduced. The special
case of a parabola degenerating to two coincident lines is presented along
with its interpretation in the workspace. The work also presented a sufficient
condition for a 3R serial chain to be binary (ellipse case) (section 3.1) or qua-
ternary (hyperbola case) (section 3.2) by using geometric observations. The
advantages of the geometry based analysis is that the conditions for binary
or quaternary robots can be extended to more generic cases of 3R robots
without resorting to complex algebraic derivations. In future work, we aim to
present a necessary and sufficient condition for a generic 3R robot to be bi-
nary or quaternary. This will allow the designer to include the condition while
optimizing for a workspace with 4 IKS. We will also prove a few conjectures
on binary and quaternary robots whose associated conic is an ellipse.
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