Optimisation of parallel mechanisms with joint limits
and collision constraints

Durgesh H Salunkhe®*, Shivesh KumarP, Damien Chablat®

*Nantes Université, Ecole Centrale Nantes, CNRS, LS2N, UMR 6004, 44000 Nantes,
France
b Robotics Innovation Center, German Research Center for Artificial Intelligence (DFKI
GmbH), 28559 Bremen, Germany

Abstract

In this chapter, a new optimization methodolog
lator (PKM) is proposed, addressing coré
joint limits, and self-collisions. The propose
local search method (Nelder-Mead algorit
such as low discrepancy distribution. i
more efficient exploration of the optimiza
global kinematic quality along with thelengt

. The algorithm optimizes a
the prismatic actuators. The
This allows for a better under-

modu
standing of the impact of specific § the final result. The chapter also
e seéarch space. It is shown that initial

@

knowledge on PKM can help red on of the search space and result
in more intuitive results. The ach is applied to optimize a PKM
with a motion constraint ge or off2 degrees of freedom. This case study
demonstrates the effectivemess o proposed methodology in addressing the

employed as sub-mechanism modules in various fields such as humanoid robots
(THOR [1], LOLA [2], Charlie [3]), exoskeletons [4}[5], haptic interfaces [6], surg-
eries [7], and industrial applications [8, [9]. An extensive survey on PKM with
classification based on degrees of freedom and their applications is presented in
[10]. PKMs are also widely used in high-speed industrial assembly lines, like the
DELTA + 1 DOF wrist robot [IT]. Another significant application of PKMs is
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in machining tasks such as milling operations and high-speed machining tasks
[12. [13, (4]

Given the broad range of applications, PKM designs must cater to user needs
and adhere to constraints associated with different processes. These needs may
involve robot mobility, workspace size, movement precision, dynamic perfor-
mance, and stiffness. Numerous performance indices have been established to
address these requirements, which can be applied to optimization problems.
Some workspace and kinematic performance indices include the Jacobian ma-
trix conditioning, velocity amplification factors [15] [I6] [I7], regular workspace
shapes [I8], and safe working zones [19].

Various optimization methods have been propose mechanism synthesis
in the past. Some employ the mathematical formulation objective func-
tion to implement gradient descent methods ile others use numerical
approaches and evolutionary algorithms when the bbjec nction is not avail-
able in closed form or gradient-based algorith ot be'used. Some of these
algorithms include Differential Evolutiofi)(DE) tic Algorithms (GA)
[22], Branch and Prune [23], Interval-base , and Non-dominated
Sorting Genetic Algorithm IT (NSGA-II) for multi-objective opti-
mization. These methods are typically ¢omputationally expensive, with effi-
ciency heavily reliant on population sizg:

A recent development in mechanism desig

mization involves co-optimization
loys efficient algorithms to ex-

problem as an implicit function faster and more efficient convergence.

Local search methods can d ac computational cost of mechanism
optimization. The Nelder- geometric-based search for the
next best solution, is well-sui for mechanism optimization, as it allows easy

optimization of link lengths.
ferent methodologies combine local optimization methods with global searches
(28, 29, 30, 31

This chaptes
optimization
able to consts
working zofie v
fast local search a
search procedure, enables quicker progress toward a global optimum, even for
mechanisms with compftitationally expensive objective functions.

2. Design considerations in PKM optimization

In the parallel kinematic mechanism design, the following choices have to be
made:

1. Architecture of the manipulator (e.g: 3RRR(Revolute-Revolute(actuated)-
Revolute), 3RPR(Revolute-Prismatic(actuated)-Revolute) etc.)



2. Type of joints: different combinations of joints to achieve the same degrees
of freedom (dof) (e.g.: UPS(Universal-Prismatic(actuated)-Spherical), RUS,
RRPS)

3. Pose of the joints: where and how to place a particular joint’s frame?

Making a particular choice is non-trivial, especially because of its effect on the
workspace, the direct and inverse kinematic model, and the size of the mecha-
nism. Another interesting challenge is that the same architecture can perform
different tasks with either kinematic or dynamic constraints and thus have to
be optimized accordingly. The following subsectio orate on the common
objective functions and constraints involved in mech optimization to mo-

tivate the choice of the algorithm.

2.1. Objective function

It is important to evaluate the qualgy he mo performed while de-
signing a manipulator with kinematic character . The quality indices widely
used in the past are the conditioning nu r [15] and the manipulability ellip-
soid [I6]. The feasible workspace and t obal quality of the manipulator are
directly related in the presented case an an be implemented together
with appropriate weights.

2.1.1. Manipulator workspace

If the workspace involves only ori n or translation, Regular Dextrous

RDWy) [18]. Concurrently, the notion of
safe working zone for lel manipulators has been presented in [19], defin-
ing a feasible works void of singularities, internal link collisions,
and adhering e joint limits. The feasible set (F) concept in this text

workspace within the desi

2. Adhere to passive‘joint limitations

3. Ensure no internal collisions between actuators and the moving platform
for all postures

2.1.2. Quality of the manipulator

To measure the motion quality, the conditioning number (k) was introduced
in [15]. It signifies the asymptotic worst-case relative change in the output for a
relative change in the input, evaluating the output sensitivity to input changes.



The geometrical interpretation of x relates to the ellipsoid’s eccentricity pro-
portionality, providing information about the ease of movement in a specific
direction from the current end effector pose. When the k equals 1, it corre-
sponds to a sphere and the isotropic configuration. The k value ranges from 1
to 0o, and its inverse, k1, is used for bounded values and is given by , where
o represents the Jacobian matrix, J, singular values.

ot = min et e [0, 1] (1)

Omazx

The Jacobian matrix’s dimensional non-homo
ing number and is unsuitable for manipulators whos
of either R? or SO(3) [32]. This issue is vital to consi
the proposed optimization methodology for a gen
ulators shown in Section [ have only rotational doéf, so inverse conditioning
' index (k") (GCI),
the mean quality index (k~1) over the RDW, is de s follows,

is not a subset
implementing

RDW4

2.2. Constraints

PKM'’s most common constrain

plement feasible workspace include:
e non-singular constraint
e passive and active join @ S
e internal collision constra

e feasible actuator

Among these @6 ts, the first three are self-explanatory and will not be
elaborated further. e constraint regarding feasible actuator range is perti-
nent in optimising PKM with prismatic actuators and is discussed in detail to
emphasize its 1

2.2.1. Feasible actuator)range

The active joint ranges are an essential constraint during PKM design. This
constraint is particularly relevant to mechanisms with prismatic joints as actu-
ators. The goal is to constrain the actuator selection to maximize the points
in F(RDW,. Typically, a prismatic joint is represented as a constraint with
a specific minimum and maximum range and with a constraint on the ratio
between the length in the fully actuated state and its default length:

pmin S P S pmax (3)

Pmaz < stroke - ppin, stroke € [1,2] (4)



Equation [ originates from the physical structure of general prismatic joints.
If the actuator’s unextended length is p,,,, then it is impractical for typical
prismatic joints to extend beyond their original length (pae < 2 - pimin). The
novelty in expressing the actuator range in the current work is that we do not
have a static value as a limit as mentioned in Equation[3] i.e., we express the con-
straint solely in terms of the stroke ratio defined in Equation [dl This allows us
to select the optimal actuator ranges to maximize the feasible workspace with-
out imposing constraints on the prismatic joint’s minimum or maximum size.
This is demonstrated in figures[I] and 2] which introduce an example for a 2 dof
2UPS-1U orientation mechanism from [7]. The points infthe dotted space in fig-
ure [1| correspond to actuator lengths in a feasible co
is to search for an optimized bracket, [pmin, Pmaz), 1-€.
as many blue points as possible, with the constrai t the square’s side does

obtain the optimized bracket for the actua
we acquire the set of all valid points be

ing to the actuator lengths and
aximum value to the minimum
e ratio, the algorithm returns the
se, a bracket of [pmin, stroke.pmin]

actuator 1

Figure 1: Different search brackets within the actuator space (input space). The dots corre-
spond to the pair of lengths of actuators for a configuration in RDW.

2.2.2. Implementation of constraints and evaluation function
The process of implementing constraints and evaluating the performance of
a set of parameters is explained in algorithm [} The optimization space is first
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(a) Feasible workspace (white) (b) Feasible workspace (white) (c) Feasible workspace (white),
when bracket 1 in figure [I] is when bracket 2 in figure [[]is bracket 3 in figurdl] is imple-
implemented implemented ted

Figure 2: Comparison of feasible workspace (white space)

aintsy such as passive joint limits and
e constraints, it is rewarded with
t (except singularity) is violated,

i8' evaluated, the final evaluation
e workspace where all constraints are
e customized per the designer’s require-
htage can be assigned to the constraints to achieve
an optimized design for, ecific need. The algorithm demonstrates modular-
ity with the constFa@ints, w ch constraint is independent. The flexibility
to activate, te, or addiconstraints without changing the algorithm is
particularly giseful for mechanism design. The designer can experiment with
various couS fo understand their effects on the final feasible workspace.
Each constraint canbe degigned to reward or penalize a specific set of parame-
ters, allowing for a mix“of strict and non-strict constraints in the optimization.
The designer can also identify which constraint hinders the optimization and
requires modification.
In summary, evaluating a given set of parameters involves discretizing the op-
timization space, assessing each point for compliance with the constraints, and
rewarding the points that satisfy all constraints. The algorithm is modular and
flexible, allowing the designer to experiment with various constraints to achieve
an optimized design for specific needs.

ments, and appropriate




Algorithm 1: Method to calculate the evaluation and pyqnge for a set
of parameters

Result: evaluation at a given point in optimization space and the
corresponding actuator lengths
1 input —» v > It is a n-dimension point in given n-dimension
optimization space;
2 x;,4€1,..,n, > it" variable of the n-dimension optimization space;
3 pp and po > actuator lengths at a given configuration;
42e=0 > Initialising the evaluation;
5 for x1 from x1,in 10 T1imas by interval; do

6 .. > Add loops as a function of the di he space
7 for z,, from x,min 10 Tpmas by interval, do

8 f(v) > function that solves IGS, collision kL

9 [det('])aqpa P1, P2, 5_17 dC] = f(V),

10 f(v) returns the value of the determina , the
passive joint angle vector, q,, Iituat 1, p2], the
inverse of the conditioning number, collision

distance, d., between the actuators;

11 > 1. Checking for sing‘arity raints;
12 if det(J) is 0 then

13 e = -00;

14 break;

15 else

16 | reward = £~

17 end

18 > 2. Checking t sive joint limits;
19 for i from 1 to len,

20 if dpi > dpmaz OF

21 ‘ reward = 0

22 else

23 ‘ rewar -1

24

25
26 > 3. Checking for collision constraints;
27 i shold then

28
29
30
31
32 end
33 .
34 end
35 Implement the algorithm presented in [33] (Algorithm 1);
36 return valid_points, e, p1, po

valid_points[i] = [p1, p2, reward];




3. Proposed Algorithm for Mechanism Optimization

In this section, we present the complete optimization method. As discussed
in previous sections, the goal is to develop an algorithm capable of manag-
ing non-smooth objective functions and PKM design constraints. This section
is organized into three subsections, explaining the local search, global search,
and the approach used to combine them for faster and more efficient solutions,
respectively.

3.1. Local search algorithm: The NM (NM) algorithm

The NM-algorithm, a derivative-free optimizatio oritlim, was proposed
by John Nelder and Roger Mead [34]. It is also called the ll-simplex algo-
rithm since it employs simplezes to conduct a local search. In this section,
we introduce the algorithm for a single start, which loo the optimal solu-
tion in the local vicinity of the initial simplex. en discuss the algorithm’s
application in mechanism optimization@nd descri method for extract-
ing the best actuator ranges from the soluti he section concludes with an
overview of the algorithm and its implementation, lighting its strengths and
weaknesses.

ional optimisation space (O),
d. As shown in the figure, this
2-dimensional, O. The algorithm

To avoid premature convergence in an n-di
a simplex with at least n+1 points i
can be visualized with a simple grap
starts with a sorted simplex of n+
function evaluated at the i*" vertex ha

the (i + 1)"" vertex. A mea W (V)

point (vy):

alculated by excluding the worst

n—1
> Vi
Vi = % (5)

sn algorithm then compares the mean point and searches for bet-
eometrieal operations termed as (%) reflection, (ii) expansion, (44)

inside cont on, () outside contraction and (v) shrinkage. These operations

are defined

1. Reflection (vy) :

Ve =Vm + 7 (Vm — Vn), 7 = reflection coefficient (r > 0) (6)
2. Expansion (ve) :

Ve = Vm + €(Vy —Vm), e = expansion coefficient (e > 1) (7)
3. Outside contraction (vec) :

Voec = Vin + k (Vi — Vi), Kk = contraction coefficient (0 < k < r) (8)



4. Inside contraction (vic):

Vie = Vm — k (Vm — Vn), k = contraction coeflicient 9)

5. Shrinkage:

Vie[l,n] vi=s.vi, s:=shrinkage factor (0 < s < 1) (10)

The introduction of a new point (vy) into the simplex relies on the evaluation
of vy, Ve, Voe, and vje (refer to Algorithm . Lhe gprocess continues until
the stopping criteria are met. The simplex halts if i shrinkS\below a specific
value, €1, and the evaluations of every vertex of the reducedysimplex deviate by
a maximum threshold, es. The algorithm can alseflye,stopped by limiting the
number of iterations. Algorithm [2] provides the full procédufe for a single start
of the Nelder-Mead (NM)-algorithm, and the stopping criteria algorithm can be
found in [33] (Algorithm 3). Figure |3a] illustrates an‘exafmple of the operations
in a 2-dimensional optimization space, O, demenstrating the geometric search
nature of the O in the NM-algorithm. Figuze [3b|graplically depicts an example
of the points explored during an optimization process. The optimization space
of 2 dimensions of the evaluation is a funégion of these parameters.

(a) An example of an operation on a simplex (b) An example of the travel path of optimization
(defined by vg, v1,v2) in 2-dimensional O in NM-algorithm

Figure 3: The single start of the Nelder-Mead local search



Algorithm 2: Single start of the NM-algorithm
Result: Local minimum evaluation and the optimized parameters
1 initial sorted simplex {vg,V1,Va, ..., Vn_1,Vn};
2 evaluations {eg, e1, €9, ...,€n_1,€n};
3 while stop = 0 do

4 calculate vy, vy and e,
5 if (e, < e, <ep) then
6 | Vi = vy

7 else if (eg < e, ) then
8 if (e, < e.) then

9 | V= Ve
10 else

[¢)

11 ‘ Vo = Vi

12 end

13 Ise if (e, < e, <e,_1) then
14 if (e,c > e,) then ®
15 ‘ Vo = Voc!

16 else

17 | Vie[lin] vi=svy
18 end

19 Ise if (e, > e, ) then

20 if (e;c > e;) then

21 ‘ Vn = Vic;

22 else

23 | Vie[ln] vis

24 end

25 sort the simplex;

26 if Vonew > Vo th
27 | iter =0

28 else

29 ‘ iter 1

)

30 end
31 Updat from algorithm in [33] (Algorithm 3)
32 end

33 return vo,eg

I 4

8.1.1. Advantages and drawbacks of the NM-algorithm

The NM-algorithm offers a simple approach for modelling optimization prob-
lems in mechanism design, enabling the development of a general methodology
applicable to any parallel mechanism. As a derivative-free algorithm, it intro-
duces complex objective functions that may be difficult to formalize, such as the
quality index, Ii;l, described in Section Additionally, the NM-algorithm
is a local search algorithm that returns a stationary point in a relatively short
time compared to currently employed global optimization methods. This en-
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ables the designer to develop computationally expensive objective functions and
construct constraints modularly, facilitating experimentation with different con-
straints throughout development. The geometric search method inherent to the
NM-algorithm is another significant advantage relevant to mechanism design.
The optimization space’s foundation in the NM-algorithm is the optimization
variables themselves, making it logical to use this method as the following best
design parameters are chosen based on the combination of previous simplex pa-
rameters rather than using complex methods to represent a mechanism in the
optimization space that may not have a geometrical explanation for selecting
the next best proposal (e.g., chromosomes in Geneti¢c Algorithm). It is also pos-
sible to tune exploring parameters, such as reflectio ion, contraction,
and shrinkage coeflicients, using human intuition and “prio edge regarding
the importance of different parameters.
Although well-suited for our application, the
advantages. It has been proven to converge two under specific
hypotheses [35] but lacks proof of convefgence for o ation beyond two di-
mensions. It can collapse simplex patterns j lemented incorrectly, leading
to convergence to a non-stationary soluti vergence highly depends

m has certain dis-

spite these limitations, the NM-algorit valuable for our purposes, as the
goal is not to find the absolute optimized parameter but to satisfy all
constraints and achieve acceptable 4 quality. Indeed, it has been

The NM-algorithm’s loca
for global search in the optim n space, a$ discussed in the following section.

approach, algorithm is executed with different initial simplexes. It is
crucial to have unifo distributed initial simplexes to explore the maximum
optimisation space area

3.2.1. Starting simplezes for multi-start

A practical approach to generate a sampling set Oy C O is Monte Carlo
sampling using a uniform distribution (refer to, for instance, [43]), or in other
words, random sampling. Unfortunately, it is recognized [41] that these points
tend to create clusters, particularly in high-dimensional scenarios, compromising
the uniformity of the discretization. A superior alternative involves distributing
the , M points of the discretization ,Op; of , O more evenly. Specifically, the
points should be sufficiently close together without leaving any under-sampled
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regions. Certain deterministic sampling methods can be employed for this pur-
pose, as demonstrated in [42] [44]. The characteristics of such techniques are
explained in [42]. The study in [42] proposes that an effective strategy to gen-
erate uniformly dispersed deterministic point sets involves using finite segments
of so-called low-discrepancy sequences like the Halton sequence, the Hammersley
sequence, and the Sobol sequence. The presented work applies initial simplexes
selected from the Sobol sequences, as they demonstrate a more uniform distri-
bution.

[44] compared a sampling of a 2-dimensional unit cube using a sequence
of 500 points based on the uniform distribution sampling of the same
cube obtained through a low-discrepancy sequence is i

ring in the case of uniform distribution.

3.3. Cascade optimization o

In a standard execution of the NM-al iteration ceases either
when the simplex has contracted to a desi ith approximately equal
evaluations or if the same best point is ountered’ for a predetermined maxi-
mum number of iterations, as referred t opping algorithm [33] (Algorithm
3). Aiming to reduce the time for loca
of more initial simplexes, we adopt
practices in lathe machines. Genera
workpiece as quickly as possible rate is increased, and the focus is
not on the work’s finish. Later is reduced when approaching the
desired dimensions, and the ¢ is\shiftsjto the work’s finishing. Figure [4]
depicts the algorithm’s enti ow. Initially, the simplexes derived from the
Sobol sequence are integr
search is conducted for
selected initialized sim are ,utilized to enforce stricter stopping criteria,
enabling conve
local optima,
search, signi
vertex as G
to our preferences,

inspired by rough and fine-turning
removing excess material from a

bt promise satisfactory evaluations even after an extended

ducing computation time. Moreover, with an optimized

simplex, we can construct the remaining vertices according
eby regulating the initial simplex’s size.

3.8.1. Coarse search

In the coarse search, our goal is to hasten local convergence, enabling us to
maximize the number of starts in our optimization approach. This is achieved
by employing a coarser search space and easing the stopping criteria. During
the coarse search, the output space is discretized using an interval ten times
larger than in the finer search, significantly reducing computational time. The
objective of the coarse search is to identify simplexes situated on comparatively
steeper slopes in the optimization space. By relaxing the stopping criteria, the
maximum number of iterations permitted to repeat with the same evaluation

12



is limited to 10, which aids in terminating the local search more quickly. One
example of such a coarse implementation is detailed in Algorithm [3] where the
condition for incrementing the iteration is altered. We apply a condition stating
that the new evaluation found is considered better than the previous one only
if it surpasses the last evaluation by 5%. The algorithm ceases as soon as we
reach 90% of the maximum expected value.

3.3.2. Fine search

In the fine search, we sift through various local optima obtained from the
coarse search. The evaluations of the local optima sorted in ascending order,
and the top 10% of the gathered optima are selecte evaluation. In
the fine search, we enforce stricter stopping criteria, mo e constraint of
maximum expected evaluation to 100%, and discr he output space with a
ten times finer interval. The threshold considered las an vement is reduced
to 1%. These changes directly impact the comp ional time and result in a sig-
nificantly longer duration with an increa§ihg dimensi the output space. All
the optimized parameter sets from the NM ithm with stricter constraints

are compared, and the best point is suggested as timized parameter of the
PKM.

implementing
choosing criteria to
chose 'k' simplexes
for further analysis

Range of Sobol set for 'm' Nelder-Mead
parameters initial simplexes coarse search

Y

are all initial
simplexes
evaluated?

implement fine search
for 'k’ simplexes

v

choose the best
solution as the final
optimised solution

YES

Figure 44] ¢hart for the complete implemented optimization methodology

4. Results and discussion

The optimization algorithm described in this chapter was employed to op-
timize a 2UPS-1U parallel mechanism to verify the general implementation.
The chosen mechanism is widely utilized in the industry, and the significance
of the selected objective function is also discussed in this section. An open-
source implementation of the proposed algorithm and examples, including the
lambda mechanism (1 dof) and 3RRR mechanism (3 dof), can be found at:
https://github.com/salunkhedurgesh/Paralpt.
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Algorithm 3: implementation of coarse and fine local search criteria

Result: Optimised parameter set vg

input: Initial set of simplexes;

eg: the best evaluation from the previous iteration;

€maz : Maximum expected evaluation;

limit: The percentage of maximum evaluation th onsidered best;

For coarse search;

max_-iter = 3n;

margin = 1.05 ... (suggesting >5% increme
improvement);
8 limit = 0.8 ... (suggesting that 80% 6F maximum uation is a

criterion to stop);

9 For fine search;

10 max-iter = 10n;
11 margin = 1.01 ... (suggesting >1% nt js considered
improvement);

12 limit = 1;
13 stop = 0;
14 while stop = 0 do

15 Perform algorithm [2| ex
A

B =R B VU VI

algorithm in [33] (Alg
16 Perform algorithm 1| w

17 if epew > margin t
18 ‘ iter =0

19 else

20 | iter 1

21 end

22 if ite ter then

23 ‘ stop = 1;

24 end

25 if e > limitx e, .. then
26 | return stop = 1;

27 end

28 end

29 return vg from the algorithm

14



Algorithm 4: An example of implemented multi

tart o ization

[ I, B ]

~

8 end
9 sort Veposen Dy evaluation

10
11
12

13
14
15
16

Result: Optimized parameter set of the mechani its evaluation

Assuming we have ‘m’ starts for an ‘n’ dimensional opfimization
problem;

Choose m.(n+1) valid n-dimensional poi
generated;

Choose ‘k’ local optima for further fi

for start = 1:m do

Algorithm
Vchosen(Start, 1:n+ ]_) =/

for fine_start = 1:k do
Generate n more para; r sets around Veposen (fine_start);
Implement Single t fro lgorithm [2{ with fine search from
Algorithm

V fine (fing , Iin Vo, €0);

ation of the corresponding parameter set;
1), Viine[n + 1]




4.1. 1-dof lambda mechanism

The A-mechanism is a singular closed loop (1-RRpR) mechanism utilized in
legged robots as a simplification of the revolute joint [2, [46] [47], as depicted
in Figure [5] This mechanism is employed for stiffer actuation when a compact
yet strong force is necessary and non-linear transmission characteristics are pre-
ferred. The constraint equations in this situation are simple and have been
thoroughly examined in [48]. The mechanism was optimized using the determi-
nant of the Jacobian, j, as the GCI and a modified VAF. The determinant is a
scalar for the given case. For the lengths and variables illustrated in Figure [5]
the computations for these measures are:

sin(0)
p

p2 = l% + lg — 2119 COS(@),j =11l

<

1
GCIL; = j,VAF; — 1+42(j—1)?
=0

GCI = %,VAF =

i=1

Parameters Parameters Value

optimization dimension Range of parameter 1, 4]
Number of starts Number of iterations 10

Objective choice Workspace, Velocity amplification range | [0.3, 3]
Workspace (0 range) 459 stroke ratio 1.5

>timization of 1-dof lambda mechanism

Figure 5: 1-dof lambda mechanism with real-life implementation [33]

In this mechanism, the I;(OA) length is optimized with respect to l5(OB),
utilizing three distinct objective functions with parameters provided in Table
Initially, the workspace was maximized to identify an optimal length that covers
the revolute joint’s range from 45° to 135°. Subsequently, the GCI and VAF
were employed as objective functions. The mechanism’s acceptable velocity am-
plification span ranged from 0.3 to 3. The stroke ratio, the prismatic actuator’s

16



fully extended length divided by its unextended length, was % To approach a

superior global optimum, 100 individual local Nelder Mead optimization starts
were employed, and the number of iterations for the same evaluation within a
single start was limited to 10. For all objective functions, multiple solutions
with equal evaluation exist. It was observed that Iy = 4 was proposed as the
global optimum while optimizing for all different objective functions. Since the
optimization dimension was only 1, this process was swift, completing 100 coarse
single starts and 10 refined starts in 21 seconds. The evaluation increases to
a specific value (3.39) and remains constant. This value is also the maximum
possible evaluation in an ideal scenario. The resultsfor #he 1-dof lambda mech-
anism optimization are summarized in Table

Parameters GCI

Time for 1 coarse evaluation 1 second

Time for single coarse start 0.01 seconds 0.01 se

Time for one fine evaluation 5 seconds 3.1 second

Time for single fine start 0.04 seconds seconds

Best point(l2) 4 X

Best actuator range [3.37 4.76] [2.78, 417]
L 4

Table 2: The results for the optimizatien of 1- mbda mechanism

4.2. 2 dof RCM mechanism

In this section, a popular 2-dof
This mechanism features a motio generator and can be considered
his class of mechanisms has been

¢ in implementing joint modules

Figure 6: The parameters to be optimized in 2UPS-1U
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the base can be given as:

aq cos ¢ Qo COS (o
Al = |ax sin ¢1 s A2 = | az sin ¢2
h1 ha

where, a; is the distance of the first joint of i*" leg from the origin of the base
frame and ¢; is the angle between the xy-projection of vector from the origin
of the base frame to the joint and the x-axis. Similarly, ¢» is the angle between
the xy-projection of vector from the origin of the basesframe to the joint and
the y-axis. The joints of each leg are at height h spectively. The
universal joint (U) in the motion constraint generator en as [0,0,t]7
with respect to the base frame. The spherical joints4in each are represented

b1 cos iy
B1 = b1 sin ’(/Jl
hs +t

where, b; and ; are used to express t pherical §oints in the legs and have
similar interpretation as that of a; andég;. e joints of each leg are at height
hs +t and hy + t respectively.
Thus, the mechanism can be parameterized by 13 parameters after assuming
that the motion constraint generator lies on the z-axis of the base. The 13
mechanism parameters to be opti own in figure [f] and detailed above

are: [a1, 1, h1,b1,11, ha,ag, d ba, P The optimization parameters
and the constraints along wi T r)nge are shown in Table
Parameters Parameters Value
optimization dimension Range of a; [0.25, 1.5]
Range of b; [0.25, 2] Range of ¢; and v; [-1.745, 1.745]
Range of h; 15 0.1] Range of t [1, 4]
Number of st@rt 00 Number of iterations 10 and 20
Objective i Workspace, GCI, VAF | Velocity amplification range [0.3, 3]
Rangefof b; [0.25, 2] Range of ¢; and 1; [-1.745, 1.745]
Workspace (i if circle of radius 1 stroke ratio 15
limits on §phe joi +m/6radians Collision constraint considered

Table 3: The para ers set for the optimization of 2-dof RCM mechanism

The computational expense of optimizing this mechanism stems from the in-
crease in optimization space, the number of degrees of freedom, and the consid-
ered workspace. A thorough examination of the regular dextrous workspace for
the specified mechanism can be found in [52]. Results are contingent upon both
the chosen objective and the reward strategy. Table [3] presents the outcomes
obtained by optimizing the GCI and awarding valid points in the workspace
with a value of 1 and invalid points with 0. The time necessary for evaluating
one instance (a particular set of parameters) and the mean time for a single
start (the full operation until the algorithm stops and returns locally optimized
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parameters) are documented in Table 4l Further analysis was conducted to de-
termine the effects of different objectives on the overall optimization time. The
fine search process was found to be significantly more time-consuming compared
to coarse searches, highlighting the algorithm’s efficiency. Table [4] contains the
results, and the computational time was measured using the same system, in-
tended for comparison purposes only. The schematic plot of the mechanism
optimized for maximum GCI, along with the heatmap for GCI evaluation using
the optimized parameters, is shown in Figure [7] Likewise, Figure [§] displays
the schematic and heatmap of the quality linked to the VAF for the associated
optimized parameters. The schematics shown in ures indicate that the
optimized parameters gravitate towards an architect ith actuated legs sepa-
rated by 3 radians and aligned with the universal joint ax in the motion
constraint generator. This observation implies th, an intuition and expe-
rience can be employed to decrease the optimization sp dimension, leading
to accelerated optimization and more easily m turable designs.

Parameters GCI
Time for 1 coarse evaluation 14 seconds 18.3 seconds
Time for single coarse start 291 seconds 7.5 seconds
Time for one fine evaluation 50.5 seconds 1 seconds
Time for single fine start 1072 seconds 1077 seconds
Best point

la1, d1, h1,b1,91, ha, az, d2,
h3, ba, Y2, ha,t] (refer figure @

[0.68, -0.25, 0.08, 1.03, 0.1, 0.04,
0.25, -1, 0.01, 1.1, -1.45, 0.17, 2.4]

Best actuator range 12, 3]
evaluation VAF
mean 0.48
standard deviation 0.29
maximum evaluation 0.99
configuration ([a, A]) [0, 0.43]
minimum evaluation -1.2
configuration ([a, ]) [-0.99, 0.14]
Table 4: The for the optimization of 2-dof RCM mechanism

Haat Map for tha quality related to VAF

Plot for‘alpha = 0
beta =0

wop T om0 - n ™
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™

Figure 7: The schematic plot for the mechanism optimized for GCI and the heatmap for
the evaluation. Calculation of GCI for this mechanism is discussed in [52]. The rightmost
subfigure is the heatmap for the VAF quality corresponding to the same parameters.
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Figure 8: The schematic plot for the mechanism optimized for VAF and the heatmap for the

evaluation. The rightmost subfigure is the heatmap for the,GCIlcorresponding to the same
parameters.

4.3. Dimension reduction

Human intuition can be implemented to further redd@e the optimization
space such that the hybrid series-parallel syst be Optimized faster and
in an efficient manner. The observations‘presented in previous section con-
firms that basic analysis of the mechanis reatly help in reducing the
optimization space. In the case of 2UPS-
universal joint in each leg as zero reduces 2 parametérs(h, he). As we observed
that the two legs are optimized when rt, if we fix A; along z-axis and
Ay along y-axis, we further reduce t ers (¢1, ¢2). Similar process
h, Y1 = 0, and ¥ = 0. In order
n be made symmetrical such that
educes the 13 parameter space to
only 4 dimensional space with agbsh and $i@s,the optimization parameters. Such

optimization.

5. Conclusio

In this ch@a e presented a novel optimization algorithm for parallel
manipulators g able to implement the joint limits and the collision of
prismatic joints asleonstraints. The optimization methodology is also able to
optimize the length of thé actuator stroke, which enables the designer greater
flexibility and clarity in’the choice of the actuators. The Nelder-Mead algo-
rithm uses geometric methods to search for a local optimum, which is relevant
for mechanism optimization. The algorithm implements a two-step search by
combining a faster local search Nelder-Mead algorithm with initial simplexes
spread over all the parameter space and then uses a finer search by using the
locally optimized points in the step 1. The algorithm is general and can adapt
to any non-redundant parallel mechanisms with prismatic as well as revolute
joint. The paper presents two different mechanism optimization as an exam-
ple to present the flexibility of the algorithm. It is observed in the design of
2UPS-1U that the optimal solutions correspond to an orthogonal arrangements
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of the legs. This confirms that human feedback and mechanism knowledge can
be used to reduce the dimension of the search space.

When it comes to design optimization of series-parallel hybrid mechanisms,
we have only scratched the surface of the problem. A holistic treatment of
the design optimization problem for series-parallel hybrid robots would require
dealing with a very large dimensional space of design variables for which one
would require more computationally efficient optimization schemes. Addition-
ally, the study presented in this chapter took into account only the kinematic
properties of the mechanism. Including the dynamics into account during the
co-design process is also a very important avenue ture work. Millions of
years of biological evolution has led to the interestin binations that
we witness in animals. It remains an open problem i ics community
to develop co-design frameworks which are capa produce robot designs
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