
P
re

pr
in

t

Optimisation of parallel mechanisms with joint limits
and collision constraints

Durgesh H Salunkhea,∗, Shivesh Kumarb, Damien Chablata

aNantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, 44000 Nantes,
France

bRobotics Innovation Center, German Research Center for Artificial Intelligence (DFKI
GmbH), 28359 Bremen, Germany

Abstract

In this chapter, a new optimization methodology for parallel kinematic manipu-
lator (PKM) is proposed, addressing constraints related to singularities, passive
joint limits, and self-collisions. The proposed optimization approach combines a
local search method (Nelder-Mead algorithm) with global search methodologies
such as low discrepancy distribution. This combination allows for faster and
more efficient exploration of the optimization space. The algorithm optimizes a
global kinematic quality along with the length of the prismatic actuators. The
design constraints can be introduced modularly. This allows for a better under-
standing of the impact of specific criteria on the final result. The chapter also
discusses the effect of the dimension of the search space. It is shown that initial
knowledge on PKM can help reduce the dimension of the search space and result
in more intuitive results. The presented approach is applied to optimize a PKM
with a motion constraint generator of 2 degrees of freedom. This case study
demonstrates the effectiveness of the proposed methodology in addressing the
challenges associated with the optimization of PKMs.

Keywords: parallel mechanisms, optimization, Nelder-Mead

1. Introduction

Owing to their advantages, Parallel Kinematic Manipulators (PKM) are
employed as sub-mechanism modules in various fields such as humanoid robots
(THOR [1], LOLA [2], Charlie [3]), exoskeletons [4, 5], haptic interfaces [6], surg-
eries [7], and industrial applications [8, 9]. An extensive survey on PKM with
classification based on degrees of freedom and their applications is presented in
[10]. PKMs are also widely used in high-speed industrial assembly lines, like the
DELTA + 1 DOF wrist robot [11]. Another significant application of PKMs is

∗Corresponding author

Preprint submitted to Biologically Inspired Series-Parallel Hybrid Robots March 14, 2024

P
re

pr
in

t

in machining tasks such as milling operations and high-speed machining tasks
[12, 13, 14].

Given the broad range of applications, PKM designs must cater to user needs
and adhere to constraints associated with different processes. These needs may
involve robot mobility, workspace size, movement precision, dynamic perfor-
mance, and stiffness. Numerous performance indices have been established to
address these requirements, which can be applied to optimization problems.
Some workspace and kinematic performance indices include the Jacobian ma-
trix conditioning, velocity amplification factors [15, 16, 17], regular workspace
shapes [18], and safe working zones [19].

Various optimization methods have been proposed for mechanism synthesis
in the past. Some employ the mathematical formulation of the objective func-
tion to implement gradient descent methods [20], while others use numerical
approaches and evolutionary algorithms when the objective function is not avail-
able in closed form or gradient-based algorithms cannot be used. Some of these
algorithms include Differential Evolution (DE) [21], Genetic Algorithms (GA)
[22], Branch and Prune [23], Interval-based analysis [18], and Non-dominated
Sorting Genetic Algorithm II (NSGA-II) [24, 25, 26] for multi-objective opti-
mization. These methods are typically computationally expensive, with effi-
ciency heavily reliant on population size.

A recent development in mechanism design optimization involves co-optimization
with motion trajectories [27]. This approach employs efficient algorithms to ex-
plore implicitly defined manifolds, leveraging the advantages of representing the
problem as an implicit function for faster and more efficient convergence.

Local search methods can decrease the computational cost of mechanism
optimization. The Nelder-Mead algorithm, a geometric-based search for the
next best solution, is well-suited for mechanism optimization, as it allows easy
optimization of link lengths. To prevent convergence to a local optimum, dif-
ferent methodologies combine local optimization methods with global searches
[28, 29, 30, 31].

This chapter introduces an accelerated, general algorithm for PKM design
optimization that is flexible concerning objective function definition and adapt-
able to constraints. The method optimizes the design for the maximum safe
working zone while considering the physical stroke of the prismatic actuator. A
fast local search algorithm, the Nelder-Mead algorithm, combined with a global
search procedure, enables quicker progress toward a global optimum, even for
mechanisms with computationally expensive objective functions.

2. Design considerations in PKM optimization

In the parallel kinematic mechanism design, the following choices have to be
made:

1. Architecture of the manipulator (e.g: 3RRR(Revolute-Revolute(actuated)-
Revolute), 3RPR(Revolute-Prismatic(actuated)-Revolute) etc.)

2

P
re

pr
in

t

2. Type of joints: different combinations of joints to achieve the same degrees
of freedom (dof) (e.g.: UPS(Universal-Prismatic(actuated)-Spherical), RUS,
RRPS)

3. Pose of the joints: where and how to place a particular joint’s frame?

Making a particular choice is non-trivial, especially because of its effect on the
workspace, the direct and inverse kinematic model, and the size of the mecha-
nism. Another interesting challenge is that the same architecture can perform
different tasks with either kinematic or dynamic constraints and thus have to
be optimized accordingly. The following subsections elaborate on the common
objective functions and constraints involved in mechanism optimization to mo-
tivate the choice of the algorithm.

2.1. Objective function

It is important to evaluate the quality of the motion performed while de-
signing a manipulator with kinematic characteristics. The quality indices widely
used in the past are the conditioning number [15] and the manipulability ellip-
soid [16]. The feasible workspace and the global quality of the manipulator are
directly related in the presented case and thus can be implemented together
with appropriate weights.

2.1.1. Manipulator workspace

If the workspace involves only orientation or translation, Regular Dextrous
Workspace (RDW) is an objective function representing an n-dimensional sphere
within the n-dimensional output space. The necessary workspace is not consid-
ered a constraint, but rather, the algorithm aims to achieve the largest feasible
workspace within the desired RDW (RDWd) [18]. Concurrently, the notion of
safe working zone for parallel manipulators has been presented in [19], defin-
ing a feasible workspace as one devoid of singularities, internal link collisions,
and adhering to passive joint limits. The feasible set (F) concept in this text
pertains to the collection of all points in the discretized output space (K), such
that:

1. They correspond to non-singular configurations

2. Adhere to passive joint limitations

3. Ensure no internal collisions between actuators and the moving platform
for all postures

2.1.2. Quality of the manipulator

To measure the motion quality, the conditioning number (κ) was introduced
in [15]. It signifies the asymptotic worst-case relative change in the output for a
relative change in the input, evaluating the output sensitivity to input changes.

3

P
re

pr
in

t

The geometrical interpretation of κ relates to the ellipsoid’s eccentricity pro-
portionality, providing information about the ease of movement in a specific
direction from the current end effector pose. When the κ equals 1, it corre-
sponds to a sphere and the isotropic configuration. The κ value ranges from 1
to ∞, and its inverse, κ−1, is used for bounded values and is given by (1), where
σ represents the Jacobian matrix, J, singular values.

κ−1 =
σmin

σmax
, κ−1 ∈ [0, 1] (1)

The Jacobian matrix’s dimensional non-homogeneity affects the condition-
ing number and is unsuitable for manipulators whose workspace is not a subset
of either R3 or SO(3) [32]. This issue is vital to consider when implementing
the proposed optimization methodology for a general manipulator. The manip-
ulators shown in Section 4 have only rotational dof, so the inverse conditioning
number is chosen as the quality index. A global conditioning index (κ−1

g) (GCI),
the mean quality index (κ−1) over the RDW, is defined as follows,

κ−1
g :=

RDWd∑
1

κ−1

RDWd
(2)

2.2. Constraints

PKM’s most common constraints to implement feasible workspace include:

• non-singular constraint

• passive and active joint limits

• internal collision constraints

• feasible actuator range

Among these constraints, the first three are self-explanatory and will not be
elaborated further. The constraint regarding feasible actuator range is perti-
nent in optimising PKM with prismatic actuators and is discussed in detail to
emphasize its importance.

2.2.1. Feasible actuator range

The active joint ranges are an essential constraint during PKM design. This
constraint is particularly relevant to mechanisms with prismatic joints as actu-
ators. The goal is to constrain the actuator selection to maximize the points
in F

⋂
RDWd. Typically, a prismatic joint is represented as a constraint with

a specific minimum and maximum range and with a constraint on the ratio
between the length in the fully actuated state and its default length:

ρmin ≤ ρ ≤ ρmax (3)

ρmax ≤ stroke · ρmin, stroke ∈ [1, 2] (4)

4

P
re

pr
in

t

Equation 4 originates from the physical structure of general prismatic joints.
If the actuator’s unextended length is ρmin, then it is impractical for typical
prismatic joints to extend beyond their original length (ρmax < 2 · ρmin). The
novelty in expressing the actuator range in the current work is that we do not
have a static value as a limit as mentioned in Equation 3, i.e., we express the con-
straint solely in terms of the stroke ratio defined in Equation 4. This allows us
to select the optimal actuator ranges to maximize the feasible workspace with-
out imposing constraints on the prismatic joint’s minimum or maximum size.
This is demonstrated in figures 1 and 2, which introduce an example for a 2 dof
2UPS-1U orientation mechanism from [7]. The points in the dotted space in fig-
ure 1 correspond to actuator lengths in a feasible configuration. The objective
is to search for an optimized bracket, [ρmin, ρmax], i.e., a bracket encompassing
as many blue points as possible, with the constraint that the square’s side does
not exceed a given proportion relative to its minimum value.

An algorithm presented in [33] (Algorithm 1) details the method used to
obtain the optimized bracket for the actuators. After discretizing the RDWd,
we acquire the set of all valid points belonging to F . Upon calculating the
actuator length values at each point, the minimum ρmin and maximum ρmax

value for the actuator is determined. The algorithm input is an n x 3 matrix
for the n valid points, with columns corresponding to the actuator lengths and
the evaluation at that point. If the ratio of the maximum value to the minimum
value of the actuator length respects the stroke ratio, the algorithm returns the
actuator range without modification. Otherwise, a bracket of [ρmin, stroke.ρmin]
is generated, and the actuator length values for each point in the set of valid
points are checked against the bracket, and the number of points satisfying the
bracket is stored. This process repeats by incrementing the ρ from ρmin to
stroke.ρmin.

Figure 1: Different search brackets within the actuator space (input space). The dots corre-
spond to the pair of lengths of actuators for a configuration in RDW.

2.2.2. Implementation of constraints and evaluation function

The process of implementing constraints and evaluating the performance of
a set of parameters is explained in algorithm 1. The optimization space is first

5

P
re

pr
in

t

(a) Feasible workspace (white)
when bracket 1 in figure 1 is
implemented

(b) Feasible workspace (white)
when bracket 2 in figure 1 is
implemented

(c) Feasible workspace (white),
bracket 3 in figure1 is imple-
mented

Figure 2: Comparison of feasible workspace (white space) within the RDWd for different
search brackets and a specific mechanism (2UPS-1U). The striped and dotted part represent
the violation due to actuator lengths of first and second leg, respectively.

discretized to evaluate the parameters, and each point is evaluated for compli-
ance with the constraints. Some constraints are strictly enforced, meaning that
if any point in the RDWd violates them, the set of parameters is considered
invalid. In the current algorithm, the singularity constraint is strict. If the
singularity curve intersects with even one point of RDWd, the evaluation of
the given parameters is negative. If the RDWd is singularity-free, each point is
evaluated for compliance with other constraints, such as passive joint limits and
collision constraints. If a point satisfies all the constraints, it is rewarded with
the corresponding κ−1 value. If any constraint (except singularity) is violated,
the point in RDWd is given a 0 value.
As each point in the discretized workspace is evaluated, the final evaluation
is the cumulative value of κ−1 over the workspace where all constraints are
satisfied. The rewarding strategy can be customized per the designer’s require-
ments, and appropriate weightage can be assigned to the constraints to achieve
an optimized design for a specific need. The algorithm demonstrates modular-
ity with the constraints, where each constraint is independent. The flexibility
to activate, deactivate, or add constraints without changing the algorithm is
particularly useful for mechanism design. The designer can experiment with
various constraints to understand their effects on the final feasible workspace.
Each constraint can be designed to reward or penalize a specific set of parame-
ters, allowing for a mix of strict and non-strict constraints in the optimization.
The designer can also identify which constraint hinders the optimization and
requires modification.
In summary, evaluating a given set of parameters involves discretizing the op-
timization space, assessing each point for compliance with the constraints, and
rewarding the points that satisfy all constraints. The algorithm is modular and
flexible, allowing the designer to experiment with various constraints to achieve
an optimized design for specific needs.

6

P
re

pr
in

t

Algorithm 1: Method to calculate the evaluation and ρrange for a set
of parameters

Result: evaluation at a given point in optimization space and the
corresponding actuator lengths

1 input → v ▷ It is a n-dimension point in given n-dimension
optimization space;

2 xi, i ∈ 1, .., n, ▷ ith variable of the n-dimension optimization space;
3 ρ1 and ρ2 ▷ actuator lengths at a given configuration;
4 e = 0 ▷ Initialising the evaluation;
5 for x1 from x1min to x1max by intervali do
6 ... ▷ Add loops as a function of the dimension of the space
7 for xn from xnmin to xnmax by intervaln do
8 f(v) ▷ function that solves IGS, collision distance and κ−1;
9 [det(J),qp, ρ1, ρ2, κ−1, dc] = f(v);

10 f(v) returns the value of the determinant of Jacobian, the
passive joint angle vector, qp, actuator lengths, [ρ1, ρ2], the
inverse of the conditioning number, κ−1 and the collision
distance, dc, between the actuators;

11 ▷ 1. Checking for singularity constraints;

12 if det(J) is 0 then
13 e = -∞;
14 break;

15 else
16 reward = κ−1

17 end
18 ▷ 2. Checking the passive joint limits;

19 for i from 1 to length of qp do
20 if qpi ≥ qpmax or qpi ≤ qpmin then
21 reward = 0
22 else
23 reward = κ−1

24 end

25 end
26 ▷ 3. Checking for collision constraints;

27 if dc ≥ threshold then
28 reward = 0
29 end
30 e = e + reward;
31 valid points[i] = [ρ1, ρ2, reward];

32 end
33 ...

34 end
35 Implement the algorithm presented in [33] (Algorithm 1);
36 return valid points, e, ρ1, ρ2

7

P
re

pr
in

t

3. Proposed Algorithm for Mechanism Optimization

In this section, we present the complete optimization method. As discussed
in previous sections, the goal is to develop an algorithm capable of manag-
ing non-smooth objective functions and PKM design constraints. This section
is organized into three subsections, explaining the local search, global search,
and the approach used to combine them for faster and more efficient solutions,
respectively.

3.1. Local search algorithm: The NM (NM) algorithm

The NM-algorithm, a derivative-free optimization algorithm, was proposed
by John Nelder and Roger Mead [34]. It is also called the downhill-simplex algo-
rithm since it employs simplexes to conduct a local space search. In this section,
we introduce the algorithm for a single start, which looks for the optimal solu-
tion in the local vicinity of the initial simplex. We then discuss the algorithm’s
application in mechanism optimization and describe the method for extract-
ing the best actuator ranges from the solution. The section concludes with an
overview of the algorithm and its implementation, highlighting its strengths and
weaknesses.

To avoid premature convergence in an n-dimensional optimisation space (O),
a simplex with at least n+1 points in O is needed. As shown in the figure, this
can be visualized with a simple graphic for a 2-dimensional, O. The algorithm
starts with a sorted simplex of n+1 points (v0,v1, ...vn) such that the objective
function evaluated at the ith vertex has a value better than or equal to that of
the (i + 1)th vertex. A mean point (vm) is calculated by excluding the worst
point (vn):

vm :=

n−1∑
i=0

vi

n
(5)

The optimization algorithm then compares the mean point and searches for bet-
ter points by geometrical operations termed as (i) reflection, (ii) expansion, (iii)
inside contraction, (iv) outside contraction and (v) shrinkage. These operations
are defined as follows:

1. Reflection (vr) :

vr = vm + r (vm − vn), r = reflection coefficient (r > 0) (6)

2. Expansion (ve) :

ve = vm + e (vr − vm), e = expansion coefficient (e > 1) (7)

3. Outside contraction (voc) :

voc = vm + k (vm − vn), k = contraction coefficient (0 < k < r) (8)

8

P
re

pr
in

t

4. Inside contraction (vic):

vic = vm − k (vm − vn), k = contraction coefficient (9)

5. Shrinkage:

∀ i ∈ [1, n] vi = s .vi, s := shrinkage factor (0 < s < 1) (10)

The introduction of a new point (vn) into the simplex relies on the evaluation
of vr, ve, voc, and vic (refer to Algorithm 2). The process continues until
the stopping criteria are met. The simplex halts if it shrinks below a specific
value, ϵ1, and the evaluations of every vertex of the reduced simplex deviate by
a maximum threshold, ϵ2. The algorithm can also be stopped by limiting the
number of iterations. Algorithm 2 provides the full procedure for a single start
of the Nelder-Mead (NM)-algorithm, and the stopping criteria algorithm can be
found in [33] (Algorithm 3). Figure 3a illustrates an example of the operations
in a 2-dimensional optimization space, O, demonstrating the geometric search
nature of the O in the NM-algorithm. Figure 3b graphically depicts an example
of the points explored during an optimization process. The optimization space
of 2 dimensions of the evaluation is a function of these parameters.

(a) An example of an operation on a simplex
(defined by v0, v1, v2) in 2-dimensional O

(b) An example of the travel path of optimization
in NM-algorithm

Figure 3: The single start of the Nelder-Mead local search

9

P
re

pr
in

t

Algorithm 2: Single start of the NM-algorithm

Result: Local minimum evaluation and the optimized parameters
1 initial sorted simplex {v0,v1,v2, ...,vn−1,vn};
2 evaluations {e0, e1, e2, ..., en−1, en};
3 while stop = 0 do
4 calculate vm,vr and er;
5 if (en < er < e0) then
6 vn = vr;
7 else if (e0 < er) then
8 if (er < ee) then
9 vn = ve;

10 else
11 vn = vr;
12 end

13 else if (en < er < en−1) then
14 if (eoc > er) then
15 vn = voc;
16 else
17 ∀ i ∈ [1, n] vi = s.vi;
18 end

19 else if (er > en) then
20 if (eic > er) then
21 vn = vic;
22 else
23 ∀ i ∈ [1, n] vi = s.vi;
24 end

25 sort the simplex;
26 if v0new > v0 then
27 iter = 0
28 else
29 iter = iter + 1
30 end
31 Update ’stop’ from algorithm in [33] (Algorithm 3)

32 end
33 return v0, e0

3.1.1. Advantages and drawbacks of the NM-algorithm

The NM-algorithm offers a simple approach for modelling optimization prob-
lems in mechanism design, enabling the development of a general methodology
applicable to any parallel mechanism. As a derivative-free algorithm, it intro-
duces complex objective functions that may be difficult to formalize, such as the
quality index, κ−1

g , described in Section 2.2. Additionally, the NM-algorithm
is a local search algorithm that returns a stationary point in a relatively short
time compared to currently employed global optimization methods. This en-

10

P
re

pr
in

t

ables the designer to develop computationally expensive objective functions and
construct constraints modularly, facilitating experimentation with different con-
straints throughout development. The geometric search method inherent to the
NM-algorithm is another significant advantage relevant to mechanism design.
The optimization space’s foundation in the NM-algorithm is the optimization
variables themselves, making it logical to use this method as the following best
design parameters are chosen based on the combination of previous simplex pa-
rameters rather than using complex methods to represent a mechanism in the
optimization space that may not have a geometrical explanation for selecting
the next best proposal (e.g., chromosomes in Genetic Algorithm). It is also pos-
sible to tune exploring parameters, such as reflection, expansion, contraction,
and shrinkage coefficients, using human intuition and prior knowledge regarding
the importance of different parameters.

Although well-suited for our application, the NM-algorithm has certain dis-
advantages. It has been proven to converge to dimension two under specific
hypotheses [35] but lacks proof of convergence for optimization beyond two di-
mensions. It can collapse simplex patterns if implemented incorrectly, leading
to convergence to a non-stationary solution [36]. Convergence highly depends
on the initial simplex size and the coefficient choices, as discussed in [37]. De-
spite these limitations, the NM-algorithm is valuable for our purposes, as the
goal is not to find the absolute optimized design parameter but to satisfy all
constraints and achieve acceptable performance quality. Indeed, it has been
successfully implemented in various applications [30, 31]. Convergent variants
have been proposed to circumvent premature convergence [38], allowing the
algorithm to explore additional points in case of near collapse.

The NM-algorithm’s local search is combined with a multi-start technique
for global search in the optimization space, as discussed in the following section.

3.2. Global search algorithm

The NM algorithm has been combined with other global search methods,
such as low-discrepancy points [39], genetic algorithm [28], and Powell optimiza-
tion [29], in previous work. To explore global optimisation space, we implement
a multi-start NM-algorithm with low discrepancy points [40, 41, 42]. In this
approach, the NM-algorithm is executed with different initial simplexes. It is
crucial to have uniformly distributed initial simplexes to explore the maximum
optimisation space area.

3.2.1. Starting simplexes for multi-start

A practical approach to generate a sampling set OM ⊂ O is Monte Carlo
sampling using a uniform distribution (refer to, for instance, [43]), or in other
words, random sampling. Unfortunately, it is recognized [41] that these points
tend to create clusters, particularly in high-dimensional scenarios, compromising
the uniformity of the discretization. A superior alternative involves distributing
the ,M points of the discretization ,OM of ,O more evenly. Specifically, the
points should be sufficiently close together without leaving any under-sampled

11

P
re

pr
in

t

regions. Certain deterministic sampling methods can be employed for this pur-
pose, as demonstrated in [42, 44]. The characteristics of such techniques are
explained in [42]. The study in [42] proposes that an effective strategy to gen-
erate uniformly dispersed deterministic point sets involves using finite segments
of so-called low-discrepancy sequences like the Halton sequence, the Hammersley
sequence, and the Sobol sequence. The presented work applies initial simplexes
selected from the Sobol sequences, as they demonstrate a more uniform distri-
bution.

[44] compared a sampling of a 2-dimensional unit cube using a sequence
of 500 points based on the uniform distribution and a sampling of the same
cube obtained through a low-discrepancy sequence (in this instance, the Sobol
sequence [45]). It has been sufficiently demonstrated that the second sequence
provides better space coverage, with the largest voids among the points occur-
ring in the case of uniform distribution.

3.3. Cascade optimization

In a standard execution of the NM-algorithm, the iteration ceases either
when the simplex has contracted to a desirable size with approximately equal
evaluations or if the same best point is encountered for a predetermined maxi-
mum number of iterations, as referred to the stopping algorithm [33] (Algorithm
3). Aiming to reduce the time for local convergence and enable the exploration
of more initial simplexes, we adopt a method inspired by rough and fine-turning
practices in lathe machines. Generally, when removing excess material from a
workpiece as quickly as possible, the feed rate is increased, and the focus is
not on the work’s finish. Later, the feed rate is reduced when approaching the
desired dimensions, and the emphasis shifts to the work’s finishing. Figure 4
depicts the algorithm’s entire flow. Initially, the simplexes derived from the
Sobol sequence are integrated into the multi-start NM-algorithm, and a coarse
search is conducted for local optima. Subsequently, local optima from some
selected initialized simplexes are utilized to enforce stricter stopping criteria,
enabling convergence to a stationary point with higher precision. We discard
local optima that do not promise satisfactory evaluations even after an extended
search, significantly reducing computation time. Moreover, with an optimized
vertex as an initial simplex, we can construct the remaining vertices according
to our preferences, thereby regulating the initial simplex’s size.

3.3.1. Coarse search

In the coarse search, our goal is to hasten local convergence, enabling us to
maximize the number of starts in our optimization approach. This is achieved
by employing a coarser search space and easing the stopping criteria. During
the coarse search, the output space is discretized using an interval ten times
larger than in the finer search, significantly reducing computational time. The
objective of the coarse search is to identify simplexes situated on comparatively
steeper slopes in the optimization space. By relaxing the stopping criteria, the
maximum number of iterations permitted to repeat with the same evaluation

12

P
re

pr
in

t

is limited to 10, which aids in terminating the local search more quickly. One
example of such a coarse implementation is detailed in Algorithm 3, where the
condition for incrementing the iteration is altered. We apply a condition stating
that the new evaluation found is considered better than the previous one only
if it surpasses the last evaluation by 5%. The algorithm ceases as soon as we
reach 90% of the maximum expected value.

3.3.2. Fine search

In the fine search, we sift through various local optima obtained from the
coarse search. The evaluations of the local optima are sorted in ascending order,
and the top 10% of the gathered optima are selected for further evaluation. In
the fine search, we enforce stricter stopping criteria, modify the constraint of
maximum expected evaluation to 100%, and discretize the output space with a
ten times finer interval. The threshold considered as an improvement is reduced
to 1%. These changes directly impact the computational time and result in a sig-
nificantly longer duration with an increasing dimension of the output space. All
the optimized parameter sets from the NM-algorithm with stricter constraints
are compared, and the best point is suggested as an optimized parameter of the
PKM.

Figure 4: The flowchart for the complete implemented optimization methodology

4. Results and discussion

The optimization algorithm described in this chapter was employed to op-
timize a 2UPS-1U parallel mechanism to verify the general implementation.
The chosen mechanism is widely utilized in the industry, and the significance
of the selected objective function is also discussed in this section. An open-
source implementation of the proposed algorithm and examples, including the
lambda mechanism (1 dof) and 3RRR mechanism (3 dof), can be found at:
https://github.com/salunkhedurgesh/ParaOpt.

13

https://github.com/salunkhedurgesh/ParaOpt

P
re

pr
in

t

Algorithm 3: implementation of coarse and fine local search criteria

Result: Optimised parameter set v0

1 input: Initial set of simplexes;
2 e0: the best evaluation from the previous iteration;
3 emax : Maximum expected evaluation;
4 limit: The percentage of maximum evaluation that is considered best;
5 For coarse search;
6 max iter = 3 n;
7 margin = 1.05 ... (suggesting ≥5% increment is considered

improvement);
8 limit = 0.8 ... (suggesting that 80% of maximum evaluation is a

criterion to stop);
9 For fine search;

10 max iter = 10 n;
11 margin = 1.01 ... (suggesting ≥1% increment is considered

improvement);
12 limit = 1;
13 stop = 0;
14 while stop = 0 do
15 Perform algorithm 2 except for last step of checking stop from

algorithm in [33] (Algorithm 3);
16 Perform algorithm 1 with finer intervals;
17 if enew ≥ margin×e0 then
18 iter = 0
19 else
20 iter = iter + 1
21 end
22 if iter ≥ max iter then
23 return stop = 1;
24 end
25 if enew ≥ limit×emax then
26 return stop = 1;
27 end

28 end
29 return v0 from the algorithm 2

14

P
re

pr
in

tAlgorithm 4: An example of implemented multi-start optimization

Result: Optimized parameter set of the mechanism and its evaluation
1 Assuming we have ‘m’ starts for an ‘n’ dimensional optimization

problem;
2 Choose m.(n+1) valid n-dimensional points from the Sobol set

generated;
3 Choose ‘k’ local optima for further fine search; generally, k ≤ 0.1 m;
4 for start = 1:m do
5 Initial simplex = {v(m−1).(n+1)...vmn+m−1};
6 Implement Single start from Algorithm 2 with coarse search from

Algorithm 3;
7 vchosen(start, 1 : n+ 1) = [v0, e0];

8 end
9 sort vchosen by evaluation of the corresponding parameter set;

10 for fine start = 1:k do
11 Generate n more parameter sets around vchosen(fine start);
12 Implement Single start from Algorithm 2 with fine search from

Algorithm 3;
13 vfine(fine start, 1:n+1) = [v0, e0];

14 end
15 sort vfine by evaluation of the corresponding parameter set;
16 return vfine[1, 1 : n], vfine[n+ 1]

15

P
re

pr
in

t

4.1. 1-dof lambda mechanism

The λ-mechanism is a singular closed loop (1-RRPR) mechanism utilized in
legged robots as a simplification of the revolute joint [2, 46, 47], as depicted
in Figure 5. This mechanism is employed for stiffer actuation when a compact
yet strong force is necessary and non-linear transmission characteristics are pre-
ferred. The constraint equations in this situation are simple and have been
thoroughly examined in [48]. The mechanism was optimized using the determi-
nant of the Jacobian, j, as the GCI and a modified VAF. The determinant is a
scalar for the given case. For the lengths and variables illustrated in Figure 5,
the computations for these measures are:

ρ2 = l21 + l22 − 2l1l2 cos(θ), j = l1l2
sin(θ)

ρ

GCIi = j,VAFi
=

1

1 +
√

2(j− 1)2

= 0

 VAFmin < j < VAFmax

otherwise

GCI =

n∑
i=1

GCIi

n
,VAF =

n∑
i=1

VAFi

n

(11)

Parameters Value Parameters Value
optimization dimension 1 Range of parameter [1, 4]

Number of starts 100 Number of iterations 10
Objective choice Workspace, GCI, VAF Velocity amplification range [0.3, 3]

Workspace (θ1 range) 450 to 1350 stroke ratio 1.5

Table 1: The parameters set for the optimization of 1-dof lambda mechanism

O A

B

Figure 5: 1-dof lambda mechanism with real-life implementation [33]

In this mechanism, the l1(OA) length is optimized with respect to l2(OB),
utilizing three distinct objective functions with parameters provided in Table 1.
Initially, the workspace was maximized to identify an optimal length that covers
the revolute joint’s range from 45◦ to 135◦. Subsequently, the GCI and VAF
were employed as objective functions. The mechanism’s acceptable velocity am-
plification span ranged from 0.3 to 3. The stroke ratio, the prismatic actuator’s

16

P
re

pr
in

t

fully extended length divided by its unextended length, was 3
2 . To approach a

superior global optimum, 100 individual local Nelder Mead optimization starts
were employed, and the number of iterations for the same evaluation within a
single start was limited to 10. For all objective functions, multiple solutions
with equal evaluation exist. It was observed that l1 = 4 was proposed as the
global optimum while optimizing for all different objective functions. Since the
optimization dimension was only 1, this process was swift, completing 100 coarse
single starts and 10 refined starts in 21 seconds. The evaluation increases to
a specific value (3.39) and remains constant. This value is also the maximum
possible evaluation in an ideal scenario. The results for the 1-dof lambda mech-
anism optimization are summarized in Table 2.

Parameters GCI VAF
Time for 1 coarse evaluation 1 second 1 second
Time for single coarse start 0.01 seconds 0.01 seconds
Time for one fine evaluation 5 seconds 3.1 seconds
Time for single fine start 0.04 seconds 0.02 seconds
Best point(l2) 4 3.4
Best actuator range [3.37 4.76] [2.78, 4.17]

Table 2: The results for the optimization of 1-dof lambda mechanism

4.2. 2 dof RCM mechanism

In this section, a popular 2-dof parallel mechanism, 2UPS-1U, is optimized.
This mechanism features a motion constraint generator and can be considered
relatively complex for design optimization. This class of mechanisms has been
employed in medical applications [7] as well as in implementing joint modules
in humanoids (see [49, 50] for application as an ankle joint and [47, 51] for
application as a torso joint). The first joints in leg 1 and leg 2 with respect to

Figure 6: The parameters to be optimized in 2UPS-1U

17

P
re

pr
in

t

the base can be given as:

A1 =

a1 cosϕ1
a1 sinϕ1
h1

 , A2 =

a2 cosϕ2
a2 sinϕ2
h2


where, ai is the distance of the first joint of ith leg from the origin of the base
frame and ϕ1 is the angle between the xy-projection of vector from the origin
of the base frame to the joint and the x-axis. Similarly, ϕ2 is the angle between
the xy-projection of vector from the origin of the base frame to the joint and
the y-axis. The joints of each leg are at height h1 and h2 respectively. The
universal joint (U) in the motion constraint generator leg is given as [0, 0, t]T

with respect to the base frame. The spherical joints in each leg are represented
with respect to a frame with U as its origin and are given as:

B1 =

b1 cosψ1

b1 sinψ1

h3 + t

 , B2 =

b2 cosψ2

b2 sinψ2

h4 + t


where, bi and ψi are used to express the spherical joints in the legs and have
similar interpretation as that of ai and ϕi. The joints of each leg are at height
h3 + t and h4 + t respectively.
Thus, the mechanism can be parameterized by 13 parameters after assuming
that the motion constraint generator lies on the z-axis of the base. The 13
mechanism parameters to be optimized, as shown in figure 6 and detailed above
are: [a1, ϕ1, h1, b1, ψ1, h2, a2, ϕ2, h3, b2, ψ2, h4, t]. The optimization parameters
and the constraints along with their range are shown in Table 3.

Parameters Value Parameters Value
optimization dimension 13 Range of ai [0.25, 1.5]

Range of bi [0.25, 2] Range of ϕi and ψi [-1.745, 1.745]
Range of hi [-0.1, 0.1] Range of t [1, 4]

Number of starts 200 Number of iterations 10 and 20
Objective choice Workspace, GCI, VAF Velocity amplification range [0.3, 3]

Range of bi [0.25, 2] Range of ϕi and ψi [-1.745, 1.745]
Workspace (in roll and pitch) circle of radius 1 stroke ratio 1.5

limits on spherical joints ±π/6radians Collision constraint considered

Table 3: The parameters set for the optimization of 2-dof RCM mechanism

The computational expense of optimizing this mechanism stems from the in-
crease in optimization space, the number of degrees of freedom, and the consid-
ered workspace. A thorough examination of the regular dextrous workspace for
the specified mechanism can be found in [52]. Results are contingent upon both
the chosen objective and the reward strategy. Table 3 presents the outcomes
obtained by optimizing the GCI and awarding valid points in the workspace
with a value of 1 and invalid points with 0. The time necessary for evaluating
one instance (a particular set of parameters) and the mean time for a single
start (the full operation until the algorithm stops and returns locally optimized

18

P
re

pr
in

t

parameters) are documented in Table 4. Further analysis was conducted to de-
termine the effects of different objectives on the overall optimization time. The
fine search process was found to be significantly more time-consuming compared
to coarse searches, highlighting the algorithm’s efficiency. Table 4 contains the
results, and the computational time was measured using the same system, in-
tended for comparison purposes only. The schematic plot of the mechanism
optimized for maximum GCI, along with the heatmap for GCI evaluation using
the optimized parameters, is shown in Figure 7. Likewise, Figure 8 displays
the schematic and heatmap of the quality linked to the VAF for the associated
optimized parameters. The schematics shown in both figures indicate that the
optimized parameters gravitate towards an architecture with actuated legs sepa-
rated by π

2 radians and aligned with the universal joint axes found in the motion
constraint generator. This observation implies that human intuition and expe-
rience can be employed to decrease the optimization space’s dimension, leading
to accelerated optimization and more easily manufacturable designs.

Parameters GCI VAF
Time for 1 coarse evaluation 14 seconds 18.3 seconds
Time for single coarse start 291 seconds 347.5 seconds
Time for one fine evaluation 50.5 seconds 51 seconds
Time for single fine start 1072 seconds 1077 seconds
Best point
[a1, ϕ1, h1, b1, ψ1, h2, a2, ϕ2,
h3, b2, ψ2, h4, t] (refer figure 6)

[1.13, -1.02, -0.06, 1.47, -1.01, -
0.05, 0.72, 0.44, -0.02, 1.52, 0.54,
0.02, 3.04]

[0.68, -0.25, 0.08, 1.03, 0.1, 0.04,
0.25, -1, 0.01, 1.1, -1.45, 0.17, 2.4]

Best actuator range [2.54, 3.8] [2, 3]
evaluation
mean
standard deviation

GCI
0.79
0.18

VAF
0.48
0.29

maximum evaluation
configuration ([α, β])

1
[0.39, 0.13]

0.99
[0, 0.43]

minimum evaluation
configuration ([α, β])

0.318
[0.86, 0.51]

-1.2
[-0.99, 0.14]

Table 4: The results for the optimization of 2-dof RCM mechanism

concerned workspaceconcerned workspace

Figure 7: The schematic plot for the mechanism optimized for GCI and the heatmap for
the evaluation. Calculation of GCI for this mechanism is discussed in [52]. The rightmost
subfigure is the heatmap for the VAF quality corresponding to the same parameters.

19

P
re

pr
in

t

Concerned workspaceConcerned workspace

Figure 8: The schematic plot for the mechanism optimized for VAF and the heatmap for the
evaluation. The rightmost subfigure is the heatmap for the GCI corresponding to the same
parameters.

4.3. Dimension reduction

Human intuition can be implemented to further reduce the optimization
space such that the hybrid series-parallel system can be optimized faster and
in an efficient manner. The observations presented in the previous section con-
firms that basic analysis of the mechanism can greatly help in reducing the
optimization space. In the case of 2UPS-1U, fixing the z-coordinate of the first
universal joint in each leg as zero reduces 2 parameters(h1, h2). As we observed
that the two legs are optimized when 90◦ apart, if we fix A1 along x-axis and
A2 along y-axis, we further reduce two parameters (ϕ1, ϕ2). Similar process
is used for B1 and B2 such that h3 = h4 = h, ψ1 = 0, and ψ2 = 0. In order
to make the mechanism modular, the legs can be made symmetrical such that
a1 = a2 = a, and b1 = b2 = b. This process reduces the 13 parameter space to
only 4 dimensional space with a, b, h and t as the optimization parameters. Such
reduction can help optimize mechanisms in cascade and also provide designs that
are easier to manufacture and assemble thus adding practical advantages to the
optimization.

5. Conclusions

In this chapter, we presented a novel optimization algorithm for parallel
manipulators that is able to implement the joint limits and the collision of
prismatic joints as constraints. The optimization methodology is also able to
optimize the length of the actuator stroke, which enables the designer greater
flexibility and clarity in the choice of the actuators. The Nelder-Mead algo-
rithm uses geometric methods to search for a local optimum, which is relevant
for mechanism optimization. The algorithm implements a two-step search by
combining a faster local search Nelder-Mead algorithm with initial simplexes
spread over all the parameter space and then uses a finer search by using the
locally optimized points in the step 1. The algorithm is general and can adapt
to any non-redundant parallel mechanisms with prismatic as well as revolute
joint. The paper presents two different mechanism optimization as an exam-
ple to present the flexibility of the algorithm. It is observed in the design of
2UPS-1U that the optimal solutions correspond to an orthogonal arrangements

20

P
re

pr
in

t

of the legs. This confirms that human feedback and mechanism knowledge can
be used to reduce the dimension of the search space.

When it comes to design optimization of series-parallel hybrid mechanisms,
we have only scratched the surface of the problem. A holistic treatment of
the design optimization problem for series-parallel hybrid robots would require
dealing with a very large dimensional space of design variables for which one
would require more computationally efficient optimization schemes. Addition-
ally, the study presented in this chapter took into account only the kinematic
properties of the mechanism. Including the dynamics into account during the
co-design process is also a very important avenue for future work. Millions of
years of biological evolution has led to the interesting muscle combinations that
we witness in animals. It remains an open problem in the robotics community
to develop co-design frameworks which are capable to produce robot designs
which have similar athletic performance as their natural counterparts.

References

[1] B. Lee, C. Knabe, V. Orekhov, D. Hong, Design of a human-like range of
motion hip joint for humanoid robots, in: Proceedings of the ASME 2014
International Design Engineering Technical Conferences & Computers and
Information in Engineering Conference, Buffalo, New York, USA, 2014, pp.
8–18.

[2] S. Lohmeier, T. Buschmann, H. Ulbrich, F. Pfeiffer, Modular joint design
for performance enhanced humanoid robot LOLA, in: Proceedings 2006
IEEE International Conference on Robotics and Automation, IEEE, Or-
lando, FL, USA, 2006, pp. 88–93.

[3] D. Kuehn, M. Schilling, T. Stark, M. Zenzes, F. Kirchner, System Design
and Testing of the Hominid Robot Charlie: System Design and Testing
of the Hominid Robot Charlie, Journal of Field Robotics 34 (4) (2017)
666–703.

[4] S. Kumar, B. Bongardt, M. Simnofske, F. Kirchner, Design and kinematic
analysis of the novel almost spherical parallel mechanism active ankle, Jour-
nal of Intelligent & Robotic Systems 94 (2) (2018) 303–325.

[5] S. Kumar, H. Wöhrle, M. Trampler, M. Simnofske, H. Peters, M. Mallwitz,
E. A. Kirchner, F. Kirchner, Modular design and decentralized control of
the recupera exoskeleton for stroke rehabilitation, Applied Sciences 9 (4)
(2019).

[6] J. Arata, H. Kondo, M. Sakaguchi, H. Fujimoto, A haptic device delta-
4: Kinematics and its analysis, in: Proceedings of World Haptics 2009 -
Third Joint EuroHaptics conference and Symposium on Haptic Interfaces
for Virtual Environment and Teleoperator Systems, Salt Lake City, UT,
USA, 2009, pp. 452–457.

21

P
re

pr
in

t

[7] G. Michel, D. Salunkhe, D. Chablat, P. Bordure, A new RCM mecha-
nism for an ear and facial surgical application, in: Proceedings of Ad-
vances in Service and Industrial Robotics, Springer International Publish-
ing, Poitiers, France, 2020, pp. 408–418.

[8] A. Dutta, D. H. Salunkhe, S. Kumar, A. D. Udai, S. V. Shah, Sensorless
full body active compliance in a 6 DOF parallel manipulator, Robotics and
Computer-Integrated Manufacturing 59 (2019) 278–290.

[9] A. D. Udai, S. K. Saha, A. Dayal, Overlaid Orthogonal Force Oscillations
for Robot Assisted Localization and Assembly, ISME Journal of Mechanics
and Design 2 (1) (2018) 9–25.

[10] S. Kumar, H. Wöhrle, J. de Gea Fernández, A. Müller, F. Kirchner, A
survey on modularity and distributivity in series-parallel hybrid robots,
Journal of Mechatronics 68 (2020).

[11] J. Brinker, N. Funk, P. Ingenlath, Y. Takeda, B. Corves, Comparative
Study of Serial-Parallel Delta Robots With Full Orientation Capabilities,
IEEE Robotics and Automation Letters 2 (2) (2017) 920–926.

[12] S. Caro, D. Chablat, R. Ur-Rehman, P. Wenger, Multiobjective design
optimization of 3–PRR planar parallel manipulators, in: Proceedings of
20th CIRP Design Conference, Nantes, France, 2010, pp. 373–383.

[13] Z. Ma, A.-N. Poo, M. H. Ang, G.-S. Hong, H.-H. See, Design and con-
trol of an end-effector for industrial finishing applications, Robotics and
Computer-Integrated Manufacturing 53 (2018) 240–253.

[14] P. Wenger, D. Chablat, Kinematic analysis of a new parallel machine tool:
the Orthoglide, in: Proceedings of Advances in Robot Kinematics, Slovenia,
2000, pp. 1–11.

[15] C. Gosselin, J. Angeles, A global performance index for the kinematic op-
timization of robotic manipulators, Journal of Mechanical Design 113 (3)
(1991) 220–226.

[16] S. Chiu, Kinematic characterization of manipulators: an approach to defin-
ing optimality, in: Proceedings. 1988 IEEE International Conference on
Robotics and Automation, Philadelphia, PA, USA, 1988, pp. 828–833.

[17] D. Chablat, P. Wenger, F. Majou, The Optimal Design of Three Degree-
of-Freedom Parallel Mechanisms for Machining Applications, in: In the
Proceedings of 11th International Conference on Advanced Robotics, 2003,
Coimbra, Portugal, 2003, pp. 1–6.

[18] D. Chablat, P. Wenger, F. Majou, J.-P. Merlet, A novel method for the de-
sign of 2-dof parallel mechanisms for machining applications, International
Journal of Robotics Research 23 (6) (2007) 615–624.

22

P
re

pr
in

t

[19] R. A. Srivatsan, S. Bandyopadhyay, Determination of the safe working zone
of a parallel manipulator, in: Proceedings of Computational Kinematics,
Dordrecht, Netherlands, 2014, pp. 201–208.

[20] C. Germain, S. Caro, S. Briot, P. Wenger, Optimal design of the IRSBot-2
based on an optimized test trajectory, in: Proceedings of 37th Mechanisms
and Robotics Conference, American Society of Mechanical Engineers, Port-
land, Oregon, USA, 2013, pp. 1–11.

[21] M. H. Saadatzi, M. T. Masouleh, H. D. Taghirad, C. Gosselin, M. Tesh-
nehlab, Multi-objective scale independent optimization of 3-RPR parallel
mechanisms, in: Proceedings of 13th World Congress in Mechanism and
Machine Science, Guanajuato, Mexico, 2011, pp. 1–11.

[22] M. Gallant, R. Boudreau, The synthesis of planar parallel manipulators
with prismatic joints for an optimal, singularity-free workspace, Journal of
Robotic Systems 19 (1) (Jan. 2002).

[23] S. Caro, D. Chablat, A. Goldsztejn, D. Ishii, C. Jermann, A branch and
prune algorithm for the computation of generalized aspects of parallel
robots, in: Principles and Practice of Constraint Programming, Berlin,
Heidelberg, 2012, pp. 867–882.

[24] S. Kucuk, A dexterity comparison for 3-DOF planar parallel manipulators
with two kinematic chains using genetic algorithms, Mechatronics 19 (6)
(2009) 868–877.

[25] S. Ganesh, A. Koteswara Rao, B. Sarath kumar, Design optimization of
a 3-DOF star triangle manipulator for machining applications, Materials
Today: Proceedings 22 (12) (2020) 1845–1852.

[26] V. Muralidharan, A. Bose, K. Chatra, S. Bandyopadhyay, Methods for di-
mensional design of parallel manipulators for optimal dynamic performance
over a given safe working zone, Mechanism and Machine Theory 147 (2020)
103721.

[27] S. Ha, S. Coros, A. Alspach, J. Kim, K. Yamane, Computational co-
optimization of design parameters and motion trajectories for robotic sys-
tems, The International Journal of Robotics Research 37 (13-14) (2018)
1521–1536.

[28] N. Durand, J.-M. Alliot, A combined nelder-mead simplex and genetic
algorithm, in: Proceedings of GECCO 1999, Genetic and Evolutionary
Computation Conference, Orlando, FL, USA, 1999, pp. 1–7.

[29] A. Koscianski, M. Luersen, Globalization and parallelization of Nelder-
Mead and Powell optimization methods, in: Proceedings of Innovations
and Advanced Techniques in Systems, Computing Sciences and Software
Engineering, Dordrecht, Netherlands, 2008, pp. 93–98.

23

P
re

pr
in

t

[30] M. A. Luersen, R. Le Riche, Globalized Nelder–Mead method for engineer-
ing optimization, Computers & Structures 82 (23-26) (2004) 2251–2260.

[31] P. Niegodajew, M. Marek, W. Elsner, L. Kowalczyk, Power plant optimi-
sation—effective use of the Nelder-Mead approach, Processes 8 (3) (2020)
357.

[32] K. H. Hunt, Review: don’t cross-thread the screw!, Journal of Robotic
Systems 20 (7) (2003) 317–339.

[33] D. H. Salunkhe, G. Michel, S. Kumar, M. Sanguineti, D. Chablat, An effi-
cient combined local and global search strategy for optimization of parallel
kinematic mechanisms with joint limits and collision constraints, Mecha-
nism and Machine Theory 173 (2022) 104796.

[34] J. A. Nelder, R. Mead, A simplex method for function minimization, The
Computer Journal 7 (4) (1965) 308–313.

[35] J. C. Lagarias, J. A. Reeds, M. H. Wright, P. E. Wright, Convergence
properties of the Nelder–Mead simplex method in low dimensions, SIAM
Journal on Optimization 9 (1998) 7.

[36] K. I. M. McKinnon, Convergence of the Nelder–Mead simplex method to a
nonstationary point, SIAM Journal on Optimization 9 (1) (1998) 148–158.

[37] P. C. Wang, T. E. Shoup, Parameter sensitivity study of the Nelder–Mead
Simplex Method, Advances in Engineering Software 42 (7) (2011) 529–533.

[38] D. Byatt, Convergent variants of the Nelder-Mead algorithm.pdf, Ph.D.
thesis, University of Canterbury, England (2000).

[39] S. Zapotecas Mart́ınez, C. A. Coello Coello, A proposal to hybridize multi-
objective evolutionary algorithms with non-gradient mathematical pro-
gramming techniques, in: Proceedings of Parallel Problem Solving from
Nature – PPSN X, Berlin, Heidelberg, 2008, pp. 837–846.

[40] H. Niederreiter, Random number generation and quasi-monte carlo meth-
ods, in: Proceedings of CBMS-NSF regional conference series in applied
mathematics, Vol. 63, Philadelphia, Pennsylvania, 1992, pp. 1 – 243.

[41] K.-T. Fang, Y. Wang, Number-Theoretic Methods in Statistics, Chapman
& Hall, London, 1994.

[42] A. Alessandri, C. Cervellera, D. Macciò, M. Sanguineti, Optimization based
on quasi-Monte Carlo sampling to design state estimators for nonlinear
systems, Journal of Optimization 59 (2010) 963–984.

[43] J. M. Hammersley, D. C. Handscomb, Monte Carlo Methods, Methuen,
London, 1964.

24

P
re

pr
in

t

[44] A. Alessandri, C. Cervellera, M. Sanguineti, Design of asymptotic estima-
tors: an approach based on neural networks and nonlinear programming,
IEEE Trans. on Neural Networks 18 (1) (2007) 96–96.

[45] I. M. Sobol’, The distribution of points in a cube and the approximate
evaluation of integrals, Zh. Vychisl. Mat. i Mat. Fiz. 7 (1967) 784–802.

[46] S. Bartsch, M. Manz, P. Kampmann, A. Dettmann, H. Hanff, M. Lan-
gosz, K. v. Szadkowski, J. Hilljegerdes, M. Simnofske, P. Kloss, M. Meder,
F. Kirchner, Development and control of the multi-legged robot mantis,
in: Proceedings of ISR 2016: 47th International Symposium on Robotics,
Munich, Germany, 2016, pp. 1–8.

[47] J. Esser, S. Kumar, H. Peters, V. Bargsten, J. d. G. Fernandez, C. Mastalli,
O. Stasse, F. Kirchner, Design, analysis and control of the series-parallel
hybrid rh5 humanoid robot, in: 2020 IEEE-RAS 20th International Con-
ference on Humanoid Robots (Humanoids), 2021, Munich, Germany, 2021,
pp. 400–407.

[48] S. Kumar, Modular and Analytical Methods for Solving Kinematics and
Dynamics of Series-Parallel Hybrid Robots, Ph.D. thesis, University of Bre-
men, DFKI-RIC, Bremen, Germany (Sep. 2019).

[49] S. Kumar, A. Nayak, H. Peters, C. Schulz, A. Müller, F. Kirchner, Kine-
matic analysis of a novel parallel 2sprr+1u ankle mechanism in humanoid
robot, in: Proceedings of Advances in Robot Kinematics, Bologna, Italy,
2018, pp. 431–439.

[50] C. Stoeffler, S. Kumar, H. Peters, O. Brüls, A. Müller, F. Kirchner, Con-
ceptual design of a variable stiffness mechanism in a humanoid ankle using
parallel redundant actuation, in: Proceedings of 18th International Confer-
ence on Humanoid Robots (Humanoids), Beijing, China, 2018, pp. 462–468.

[51] M. Boukheddimi, S. Kumar, H. Peters, D. Mronga, R. Budhiraja, F. Kirch-
ner, Introducing rh5 manus: A powerful humanoid upper body design for
dynamic movements, in: 2022 International Conference on Robotics and
Automation (ICRA), 2022, pp. 01–07.

[52] D. Chablat, G. Michel, P. Bordure, S. Venkateswaran, R. Jha, Workspace
analysis in the design parameter space of a 2-DOF spherical parallel mecha-
nism for a prescribed workspace: Application to the otologic surgery, Mech-
anism and Machine Theory 157 (Mar. 2021).

25

	Introduction
	Design considerations in PKM optimization
	Objective function
	Manipulator workspace
	Quality of the manipulator

	Constraints
	Feasible actuator range
	Implementation of constraints and evaluation function

	Proposed Algorithm for Mechanism Optimization
	Local search algorithm: The NM (NM) algorithm
	Advantages and drawbacks of the NM-algorithm

	Global search algorithm
	Starting simplexes for multi-start

	Cascade optimization
	Coarse search
	Fine search

	Results and discussion
	1-dof lambda mechanism
	2 dof RCM mechanism
	Dimension reduction

	Conclusions

