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Abstract— In this paper, a kinematic motion planning al-
gorithm for cooperative spatial payload manipulation is pre-
sented. A hierarchical approach is introduced to compute real-
time collision-free motion plans for a formation of mobile
manipulator robots. Initially, collision-free configurations of a
deformable 2-D virtual bounding box are identified, over a
planning horizon, to define a convex workspace for the entire
system. Then, 3-D payload configurations whose projections lie
within the defined convex workspace are computed. Finally, a
convex decentralized model-predictive controller is formulated
to plan collision-free trajectories for the formation of mobile
manipulators. This approach facilitates real-time motion plan-
ning for the system and is scalable in the number of robots.
The algorithm is validated in simulated dynamic environments.
Simulation video: https://youtu.be/9EKj7RwRs_4.

I. INTRODUCTION

Coordination between robotic agents to collectively per-
form payload transportation tasks has recently piqued the
interest of the robotics community [1]–[3]. In this paper, we
address the problem of local motion planning for cooperative
payload manipulation in dynamic environments. Each robot
in the system is associated with a 6-degrees-of-freedom
(6-dof) manipulator and a holonomic mobile base. Each
manipulator grasps a common payload as shown in Fig. 1.
The resulting system is a mobile parallel manipulator which
is capable of non-planar payload manipulation. Planning
real-time motion for such a setup in dynamic environments
is challenging because of, (i) the high dimensional system
configuration space, (ii) real-time environmental obstacles,
and, (iii) inter-agent collision avoidance constraints which
restrict the system to operate in a non-convex workspace.

In this work, we present three key contributions to address
the above mentioned challenges. (1) We propose a hierarchi-
cal motion planning algorithm which enables real-time non-
planar mobile manipulation of a common payload in dynamic
environments. (2) As part of this motion planning, we intro-
duce a novel model-predictive controller (MPC) to identify
real-time collision-free configurations of a deformable virtual
bounding box. The planned bounding box configurations
form a multi-scale convex workspace for the robots and the
payload over the planning horizon. Subsequently, we identify
feasible configurations of the payload which lie within the
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Fig. 1: A CAD illustration of the multi-mobile-manipulator payload transport system.

planned deformable virtual bounding boxes to guarantee
environmental collision avoidance. (3) We then formulate a
novel formation controller based on decentralized MPC to
generate kinematically feasible, collision-free, trajectories for
each robot. The manipulator configuration associated with
each robot is determined using inverse kinematics between
the payload grasp point and the position of the mobile base.

We validate the efficacy of our hierarchical motion planner
by simulating the entire mobile parallel manipulator setup in
different environments consisting of both static and dynamic
obstacles. The robots are tasked to safely manipulate and
navigate the payload while tracking a moving target.

II. RELATED WORK

In this section, the works pertinent to multi-robot payload
transport systems are reviewed in detail.
Formation Frameworks: Multi-robot payload transportation
constraints mobile robots to navigate in a formation. Leader-
follower [4], behavior-based [5], virtual leader-follower [6]
and virtual structure [7] are some of the formation frame-
works that have been proposed in literature. We employ
the virtual leader-follower framework in our work to derive
decentralized motion plans.

System Modeling and Control: Virtual linkage models
[8] were used to identify multi-grasp forces for cooperative
manipulation and control. Flexible object transportation with
static collision avoidance using non-holonomic mobile ma-
nipulators was explored in [9]. In [10], a screw theoretic
framework was developed for planar payload mobile ma-
nipulation using multiple robots mounted with passive 2-
dof manipulators. Adaptive controllers [11] were studied for
dealing with unknown payload inertia parameters, external
disturbances and tracking a known trajectory using multiple
robots. The above works do not consider non-planar rigid
payload manipulation coupled with spatiotemporal motion
planning constraints.
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Constrained Optimization: In [6], differential geometry
based formation optimization was used to compute energy-
efficient robot trajectories. Semi-definite [12] programming
was leveraged to plan motion for robot formations, with
constraints on shape templates, network-connectivity, and
obstacle avoidance. Trajectory optimization [13] with lin-
earized dynamics was solved as a sequential convex pro-
gram to assign tasks and plan motion of robot swarms.
Offline trajectory optimization was established for planar
payload transportation using multiple passive 1-dof non-
holonomic mobile manipulators [14]. An integer program [3]
was proposed to geometrically plan motion for multi-mobile
manipulator, non-planar payload transportation. In [1], [15]
multi-robot planar mobile manipulation of a payload was
achieved using non-linear optimization , which is solved as a
sequential convex program. An extension to [15] was probed
to holonomically manipulate deformable payloads [16].
In contrast to the above works, each mobile manipulator in
our system has the freedom of having significant relative
motion between its end-effector grasp point and the mobile
base. This freedom grants us the ability to plan kinematically
feasible and energy optimal robot trajectories. We formulate
a scalable motion planning framework which enables a for-
mation of robots to navigate through dynamic environments
while manipulating a payload in 3-D space.
Sec. III briefs on the mathematical notations and the hier-
archical motion planning algorithm, Sec. IV analyzes the
mobile parallel manipulator, Sec. V discusses the proposed
hierarchical motion planning approach in detail, Sec. VI
elaborates on simulation results. We conclude in Sec. VII
and discuss future work directions.

III. OVERVIEW

A. Preliminaries

Let there be K mobile manipulator robots transporting a
payload P while tracking a moving target T . The position
of T in the world frame at time t is denoted by xT

t ∈ R2.
Typically the moving target is a person guiding the system
of robots globally. The configuration ξ k

t of each robot k ∈
[1 . . .K] is defined by the pose (position xk

t and yaw ψk
t ) of the

mobile base and the manipulator joint angles θ
i,k
t ,∀i ∈ [1,6],

ξ k
t = [xk

t ψk
t θ

1,k
t ..θ 6,k

t ]∈R9. The position of the manipulator
joints in the task space are denoted as mi,k

t ∈R3, ∀i ∈ [1,6].
Each robot k grasps P rigidly at gk

t ∈ R3 (= m6,k
t ), which

is pre-defined and lies on the surface of P. The system of
robots is enclosed by a 2-D virtual bounding-box B whose
configuration is denoted by ξ B

t = [xB
t , ψB

t , rB
t ] where xB

t
denotes the 2D position of its centroid, ψB

t its yaw and
rB

t the length of its half-diagonal (representing scale). The
payload’s geometric center xP

t ∈ R3 is at a constant height
offset hP above xB

t . The yaw ψP
t is always aligned with ψB

t ,
s.t. ψP

t
∼= ψB

t . Fig. 2 provides an overview of the notations
described above on an illustration of a four robot multi-
mobile manipulator system. Regional constraints of each
mobile manipulator are also visualized in Fig. 2a, definitions
of which are further discussed in Sec. V-C.
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Fig. 2: (a) Notations used in this work are overlaid on an illustration of a four robot
multi-mobile-manipulator system. (b) Manipulator configuration schematic.

B. Motion Planning Overview

The operational environment consists of M static
obstacles and N non-cooperative dynamic obstacles
(S1, ..SM,D1, ..DN). The objective of the system of robots
is to ensure that the centroid of the system bounding-box
xB

t reaches a desired destination position xBd
t in the vicinity

of the target position xT
t . Our work is motivated by the

application of simultaneous target tracking ([17], [18]) and
payload transportation. The key requirements in our target
tracking scenario are, (i) to not lose track of the target, and,
(ii) to ensure that the payload and the formation of robots
avoid all the obstacles in their vicinity. To address both
these objectives in an integrated approach, we formulate the
hierarchical motion planning algorithm, as detailed in Fig.
3. The main steps are,

1) compute xBd
t in the direction of the target position,

2) avoid environmental obstacles with the deformable vir-
tual bounding box using a novel MPC (section V-A) for
navigation and deformation,

3) rotate the payload to ensure that its projection lies within
the area occupied by B over the horizon (section V-B),

4) solve a novel decentralized MPC (section V-C) to com-
pute efficient and collision-free mobile base trajectories,

5) identify manipulator configurations based on known
mobile base positions xk

t and the derived end-effector
grasp positions gk

t from the payload configuration.

IV. SYSTEM DESCRIPTION: MOBILE PARALLEL
MANIPULATOR

Each robot in the system consists of a holonomic 3-dof
mobile base and a 6-dof manipulator. Based on the definition
of ξ k

t , each robot has a configuration space Crobot ∈ R9.
Since there are K robots in the system, Csystem ∈ R9×K .
The system motion is planned for a fixed prediction hori-
zon H to compute trajectories for ensuring inter-robot and
environmental collision avoidance (M static obstacles and N
dynamic obstacles). Therefore, at every time instant the sys-
tem has to identify configurations in Cplan ∈ R9×K×H , while
also being subjected to non-convex collision avoidance and
kinematic constraints. For real-time motion planning, this is
computationally expensive and is not scalable in the number
of robots. We, therefore, decentralize the computation of
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Fig. 3: Overview of the proposed hierarchical motion planning approach. First, the deformable bounding box configurations for a fixed time horizon are determined. Second,
payload configurations which lie within the bounding box are computed. Finally, robot trajectories are derived to facilitate cooperative manipulation of the payload.

robot configurations. This restricts the search space to R9×H ,
albeit by increasing the communication complexity. If both
the mobile base control inputs and the angular velocity of
the payload (non-planar) orientation are minimized, there is
an implicit energy minimization of the manipulator’s joint
velocities. Therefore, we hierarchically optimize the payload
orientation, and subsequently, the position of each mobile
base in Ctra j ∈ R3×H(⊂ Cplan) to obtain sub-optimal but
feasible systemic configurations.

Remark 1 - We observe that, by using any number (K) of
revolute 6-dof manipulators (in non-singular configurations)
to rigidly grasp and manipulate a common payload, the
system always has at least 6-dof. This key observation
enables us to hierarchically plan the motion of the payload,
mobile bases and the manipulators. We analyze this remark
and its consequences below.

Analysing our system of robots as a static parallel manip-
ulator which is rigidly affixed to the ground, the dof of the
constrained system in accordance with Grübler’s formula is,

do fs = λ (l−1− j)+∑
j

do fi , (1)

where, λ = 6 (for spatial systems), l is the total number of
links, including all the fixed links, j is the total number of
joints in the system, and do fi and do fs denote the degrees
of freedom of each joint and the system respectively. In
our spatial system, each manipulator k has five links and
six revolute joints (do fk = 6). Treating the robot bases and
ground plane as a single link and the payload as another link,
Eq. (1) for the static parallel manipulator is computed as,

do fs = 6((5K +2)−1−6K)+6K , (2)

where, K is the number of manipulators grasping the
payload. Notice that the dof of the system (do fs) is six for
any K. This result has the following important consequences:
(a) Scalability: The mobility of the parallel manipulator is
not affected by the number of robots used. Therefore, the
system is kinematically scalable.
(b) Payload Mobility: Since the parallel manipulator has
6-dof, the payload has complete mobility in 3-D space. This
is limited only by the manipulator link lengths.

(c) Robot Mobility: As do fs = do fk, there exists a natural
partition in the task space of the bases and manipulators.
Mobile bases (3-dof) extend the degrees of freedom of
each manipulator. This mobility introduces significant
relative motion for the bases w.r.t. to the manipulator grasp
points. This is limited only by manipulator link lengths and
spatiotemporal constraints (e.g., obstacle avoidance).
(d) Decentralization: Each robot can independently compute
feasible and efficient motion plans for itself.

Remark 2 - For the manipulated common payload to have
at least 6-dof mobility, each manipulator k ∈ [1 . . .K] should
have at least 6-dof. This remark is conditioned on each joint
being revolute and the manipulator being in a non-singular
configuration.
If each manipulator k has jk revolute joints, lk links and
do fk degree-of-freedom . For a system with K robots to have
atleast 6-dof, Eq. (1) is evaluated as,

6((lkK +2)−1− jkK)+K(do fk) ≥ 6
6(lk− jk)+do fk ≥ 0 . (3)

In our case (lk− jk)=−1, which implies do fk ≥ 6. Therefore
each manipulator should have at least 6 revolute joints to
ensure that the payload has 6-dof.

V. HIERARCHICAL MOTION PLANNING

In this section, we describe our proposed hierarchical
motion planner in detail. Sec. V-A describes a convex
optimization formulation to plan the motion of a deformable
virtual bounding box (DVB) through static and dynamic ob-
stacles. High-level motion guidance for the DVB is achieved
by tracking a desired moving target. Obstacle avoidance is
enforced by embedding artificial repulsive potential fields
into the optimization, which aid in deforming and navigating
the DVB. Sec. V-B presents an optimization program to
identify non-planar configurations of the payload so as to
ensure that its projections lie within the convex workspace
defined by DVB. In Sec. V-C feasible, collision-free robot
trajectories are computed using a convex decentralized MPC
for the mobile bases.



A. Deformable Virtual Bounding Box

To identify collision-free goal-directed motion plans for
the DVB, we formulate an MPC. The objective of the MPC
is to ensure that the centroid xB

t reaches a desired position xBd
t

efficiently. The MPC is constrained by obstacle avoidance,
linear translational dynamics, position limits, and control
saturation bounds.

1) Objective: A desired position xBd
t of the bounding box

in the vicinity of the target xT
t is defined as,

xBd
t = xT

t −
[
ddescos(ψT,B

t ) ddessin(ψT,B
t )

]
, (4)

where, ψ
T,B
t is the angle of xB

t about the target position xT
t

and ddes is a desired distance to the target. The cost of the
MPC is given as,

JMPC =
H

∑
n=0

(uB
t (n)ΩuuB

t (n)
>+

(xB
t (n+1)−xBd

t )Ωx(xB
t (n+1)−xBd

t )>), (5)

where, uB
t (n) ∈R2 is the linear translational velocity control

input at discrete horizon step n. Ωu,Ωx are diagonal positive
semi-definite weight matrices for the control and state costs
respectively. Eq. (5) minimizes the control input and the
distance between xB

t and xBd
t over a fixed time horizon H.

2) Environmental Obstacle Avoidance: We compute arti-
ficial repulsive potential field vectors for a planning horizon
and embed them as external control inputs in the MPC dy-
namics constraint. This operation preserves the convexity of
optimization. Incorporating external control inputs to avoid
collisions within an MPC framework was presented in our
previous work [19]. The repulsive potential field magnitude
w.r.t the ith obstacle, is given as,

F i(d) =


Fmax if d < dmin
π

2
( cot(z)+z− π

2
dmax−dmin

)
if dmin ≤ d ≤ dmax

0, if d > dmax

. (6)

Here, z = π

2

( d−dmin
dmax−dmin

)
, argument d is a distance metric

between xB
t and obstacle i. Note that, F i(d) varies hyper-

bolically w.r.t d. dmax and dmin are distances defining the
region of influence of the potential field and the distance at
which the potential field value tends to infinity respectively.
In practice, the potential field at dmin is clamped to a positive
value Fmax ≥ max(‖uB

t ‖) to ensure obstacle avoidance.
Dynamic Obstacle Avoidance: The external control input
fdyn(n) due to the influence of N dynamic obstacles is,

fdyn(n) =
N

∑
i

FDi(ddyn(n)) β
Di(n) , (7)

where, argument ddyn(n) = ‖xB
t (n)− xDi

t (n)‖2,∀n ∈ [1,H], is
computed using both the prediction horizon motion plan for
the bounding box and the dynamic obstacle Di. The external
control input acts along the direction β Di(n) = xB

t (n)−xDi
t (n)

‖xB
t (n)−xDi

t (n)‖2
,

which is a unit vector pointing in the direction away from
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Static Obstacle dmin
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the moving target. 

DVB observes obstacles 
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The incoming DO is avoided 
by considering its dynamics

The original scale of DVB 
is restored as obstacles 
are sparse

Fig. 4: DVB deforms and navigates through obstacles while tracking the moving target.

Di’s horizon motion plan1. dmin is the length of the half-
diagonal rB

t (n) of B (see Fig. 4) and dmax = dmin +δ ,δ > 0.
Static Obstacle Avoidance: The total external control input
due to the M static obstacles is given by,

fsta(n) =
M

∑
i

FSi(dsta(n)) β
Si(n) , (8)

where, dsta(n) = ‖xB
t (n)−xSi

t ‖2 and β Si(n) = xB
t (n)−xSi

t

‖xB
t (n)−xSi

t ‖2
. The

tracked target is also considered as a static obstacle.
3) Handling Field Local Minima: In cluttered static envi-

ronments the DVB could stagnate in space due to field local
minima. We propose the following approaches to resolve this.
Approach Angle Force: Repulsive potential fields are used
to deviate the DVB away from obstacles which lie along
the direction of approach to the target. From (6), we utilize
F i(d) to compute the repulsive force fang(n) as a function of
absolute angular difference dang = |ψT,B

t −ψ
T,Si
t |. ψ

T,B
t (n) is

the angle of B w.r.t to T , ψ
T,Si
t (n) is the angle of Si w.r.t T .

We term this external control input as approach angle force
(introduced in [19]). The total obstacle avoidance external
control input on B is given by,

fB
rep(n) = fdyn(n)+ fsta(n)+ fang(n) (9)

To embed this control input into the MPC dynamics we
clamp the magnitude of fB

rep(n) to Fmax (defined in (6)).

fB
t (n) =

{
fB
rep(n) if ‖fB

rep(n)‖< Fmax

Fmax
fB
rep(n)
‖fB

rep(n)‖
if ‖fB

rep(n)‖ ≥ Fmax
(10)

Note that in practice, we observed that the external input
fB
t (n) could cause high-frequency oscillations in the horizon

motion plans if B is very close to obstacles. To reduce
these oscillations, we add a fraction of external control input
from the previous time step κfB

t−1(n),0 < κ < 1. The total
external input which is clamped at Fmax is now given by
fB
t (n) = fB

t (n)+κfB
t−1(n). This operation recursively reduces

the effect of obstacles on B over multiple time steps and
therefore ensures a smooth change in external control input.

1The state evolution model and velocity of Di are assumed to be known.



Bounding-Box Deformations: The DVB can be deformed in
size by regulating rB

t over the horizon. Reducing rB
t (n), in-

stantaneously reduces the region of influence of the potential
field. This enables B to navigate through tight spaces. Fig.
4 highlights the dmin of the potential field (dotted-circle) as
the DVB navigates between obstacles. The deformation in
rB

t is applied over the MPC horizon, and the rate of this de-
formation is proportional to the total repulsive potential field
value fB

t (n). In our work, the DVB is deformed only along its
width. For ease of navigation of the mobile manipulators, it
is important to restore B to its original size in regions where
obstacles are sparse. Therefore, B is also associated with
a small expansion potential field f e

t (n), which is directed
towards increasing its width. This DVB width wB

t (n) and
scale rB

t (n) over a horizon are computed as follows.

wB
t (n+1) = wB

t (n)− ks‖fB
t (n)‖2 + ke f e

t (n) (11)
rB

t (n+1) = 0.5‖[lB,wB
t (n+1)]‖2 (12)

where, lB,wB
t (n), refer to the length and variable width of the

DVB respectively. ks,ke are positive constants with ks > ke.
The region of influence of f e

t (n) is given by dmin = min(rB
t )

and dmax = max(rB
t ) which are the minimum and maximum

allowed deformations respectively.
4) MPC Formulation:

xB∗
t (1) . . .xB∗

t (H+1),uB∗
t (0) . . .uB∗

t (H) = arg min
uB

t (0)...uB
t (H)

(JMPC) (13)

subject to,

xB
t (n+1)> = AxB

t (n)
>+B(uB

t (n)+ fB
t (n))

>, (14)

uB
min ≤ uB

t (n)≤ uB
max, (15)

xB
min ≤ xB

t (n+1)≤ xB
max. (16)

The objective of the MPC is given by (5). The motion
planning adheres to the following constraints.

1) LTI dynamics of xB
t given by (14),

2) collision avoidance constraints incorporated as an exter-
nal control input fB

t ∈ R2,
3) position and control saturation bounds on xB

t , uB
t .

Dynamics (A∈R2×2) and control transfer (B∈R2×2) matri-
ces are given by A = I2×2 and B = ∆tI2×2 where, I2×2 is an
identity matrix and ∆t is the sampling time. The quadratic
program computes optimal control inputs

[
uB∗

t (0) · · ·uB∗
t (H)

]
and trajectory

[
xB∗

t (1) · · ·xB∗
t (H +1)

]
towards the xBd

t . The
scale rB

t (1) is used as the initial DVB state for the next
optimization iteration at t + 1. The position xB

t and yaw
ψB

t are then controlled using a proportional controller with
xB∗

t (1) and ψ
T,B
t (defined in (4)) as desired position and yaw.

B. Payload Motion Planning

The DVB described in the previous section forms a multi-
scale convex workspace for the system of robots and the
payload over the MPC horizon. The primary goal of payload
motion planning is to roll the payload P to ensure that its
projection P̂ lies within the planned DVBs. This guaran-
tees environmental collision avoidance for P. Accordingly,
a non-linear optimization program with the objectives of

minimizing payload roll φt and angular velocity ωt over a
planning horizon Hp ≤H is formulated. The optimization is
constrained to ensure P̂ lies within the computed DVB for a
horizon. It is important to note that the limit on wB

t is defined
in accordance with the maximum roll φmax of the payload.
This guarantees the existence of a feasible solution to φt .
The constrained optimization is formulated as,

φ
∗
t (n), ω

∗
t (n) = arg min

ωt (0)...ωt (Hp)

Hp

∑
n=0

w1φt(n+1)2 +w2ωt(n)2

subject to,

RegB
t (n+1)T̂ F

P (φt(n+1),xP
t (n+1),vi)

> ≤ bB
t (n+1),∀i, (17)

φt(n+1) = φt(n)+ωt(n)∆t, (18)
φmin ≤ φt(n+1)≤ φmax, (19)
ωmin ≤ ωt(n)≤ ωmax, (20)

where, w1,w2 are constant positive weights on the objec-
tives. Here, (17) defines linear polygonal regional constraints
for the vertices of the payload ∀n. For each horizon step,
RegB

t (n+1)∈R4×2 and bB
t (n+1)∈R4 represent the planned

DVBs. T F
P is a homogeneous transformation (in SE(3)) of a

point vi (defined in the payload local frame) to the world
frame F , for a roll of φt(n + 1) and a translation of xP

t .
T̂ F

P computes the projection of the transformed point onto
the DVB. Here, vi are points which are defined in the
payload local frame, to parameterize the payload. In our
work, a cuboidal payload is used and parameterized using its
vertices vi, i ∈ [1,8]. The extension to non-cuboidal payloads
is straight-forward as long as its 3-D convex hull vertices are
known. The constraint in (18) controls the time evolution of
φt , subject to limits on φt and ωt . The defined optimization
minimizes the weighted sum of squares of φt and ωt to ensure
that payload rolls smoothly while staying within the planned
DVBs (see Fig. 3). The optimal solution at the first horizon
step (i.e. φ ∗t (1)) is used as the roll for time instant t.

C. Decentralized Formation Motion Planning

In this section we first introduce the inverse kinematics
of the 6-dof manipulator used in this work and subsequently
discuss the decentralized formation motion planning.

1) 6-dof Manipulator: The 6-revolute joints are visualized
in Fig. 5a. The joint configuration is similar to industrial
6-dof manipulators like the KR3 Agilus2 or the UR-3 ma-
nipulator3. The inverse kinematics (ikin) of the manipulator
for a known grasp point gk

t and mobile base position xk
t is

analytically determined as follows.

• θ
1,k
t , is computed using the orientation of the vector

(gk
t −xk

t ).
• θ

2,k
t ,θ 3,k

t form a planar two-link manipulator
in the plane defined by θ

1,k
t . θ

3,k
t =

cos−1 (Rz(θ
1,k
t )gk

t )
2
x+(Rz(θ

1,k
t )gk

t )
2
z−l2

2−l2
3

2l2l3
. l2 = ‖m2,k

t −m3,k
t ‖2,

l3 = ‖m3,k
t −m4,k

t ‖2 are link lengths and Rz(θ
1,k
t ) is a

2http://www.kuka.com/
3http://www.universal-robots.com/

http://www.kuka.com/
http://www.universal-robots.com/
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Fig. 5: (a) Configuration of the 6-dof manipulator used in this work. m1,k

t ,m2,k
t are

coincidental, m4−6,k
t form the coaxial 3-axis wrist (b) Inter-manipulator collision

avoidance using artificial repulsive potential fields.

three dimensional rotation matrix about the first joint

axis. θ
2,k
t = tan−1 (Rz(θ

1,k
t )gk

t )z

(Rz(θ
1,k
t )gk

t )x
− tan−1 l3 sinθ

3,k
t

l2+l3cosθ
3,k
t

.

• θ
4−6,k
t form a wrist configuration without any offset,

whose values are determined based on the payload
orientation. θ

4,k
t ,θ 5,k

t are solved as spherical angles of
the vector (xP

t −gk
t ) and θ

6,k
t is along this vector, which

is solved using the plane formed by the payload.
2) Inter-Base Collision Avoidance: The planned DVB for

a horizon using (13-16) form a collision-free convex hull
for the robot formation. We define an operational regional
constraint within B for each mobile base as shown in Fig.
2a. This region is undilated by the radius4 of the robot to
guarantee inter-mobile-base collision avoidance (visualized
in Fig. 5b). For K robots the bounding box for each horizon
step n is divided into K equally sized smaller bounding boxes
around xB

t (virtual leader). Each smaller bounding box can
be represented as a linear constraint to guarantee inter-base
collision avoidance. To ensure manipulation feasibility and
avoid singular configurations, the dimensions of the regional
constraint bounding box are geometrically constrained by the
link lengths of the manipulator, predefined height hP of the
payload and the dimensions of the cuboidal payload.

3) Inter-Manipulator Collision Avoidance: If a mobile
base nears the edges of its regional-constraints, the manipu-
lator elbow joints m3,k

t could collide with neighboring manip-
ulators. To avoid this scenario, we communicate the position
of m3,k

t with other robots j 6= k. We then associate a repulsive
field F i(delbow) (see (6)) as a function of inter-robot elbow
distances delbow. Since the motion of base directly affects
θ

1,k
t and m2−3,k

t , the repulsive field acting on each elbow
joint directly translates to the mobile base. We incorporate
this field as an external control input fk

t for mobile base k
in MPC dynamics. The region of influence of this repulsive
field is equal to max(‖m2,k

t −m3,k
t ‖2, ‖m3,k

t −m4,k
t ‖2). This is

highlighted using a dotted circle in Fig. 5b.
4) Cost: The goal of formation motion planning is not

only to avoid collisions but also to ensure that the mobile

4A mobile base is defined as a cylinder of a certain radius and height

bases minimize energy consumption and compute feasible
trajectories over a prediction horizon Hr ≤ H. We therefore
minimize the robot control input for a horizon and guide
the robots towards the center of their respective regional
constraints over Hr. The cost is defined as,

JDMPC =
Hr

∑
n=0

uk
t (n)Ωuuk

t (n)
>+

(xk
t (n+1)−xk

re f (n+1))Ωx(xk
t (n+1)−xk

re f (n+1))> (21)

where, uk
t (n) ∈R2 is the linear translational velocity control

input for robot k at control horizon step n, xk
re f (n+ 1) is

the trajectory of the center of the regional constraint of k
over the control horizon and Ωu, Ωx are diagonal positive
semi-definite weight matrices.

5) Formation Trajectory Optimization: The optimal tra-
jectory (xk∗

t ← state, uk∗
t ← control ) for each robot k is

computed using a decentralized MPC given by,

xk∗
t (1) . . .xk∗

t (Hr +1), uk∗
t (0) . . .uk∗

t (Hr) = arg min
uk

t (0)...uk
t (Hr)

JDMPC

subject to,

xk
t (n+1)> = Axk

t (n)
>+B(uk

t (n)+ fk
t )
> (22)

Regk
t (n+1)xk

t (n+1)> ≤ bk
t (n+1) (23)

uk
min ≤ uk

t (n)≤ umax, (24)

xk
min ≤ xk

t (n+1)≤ xk
max. (25)

Here, (22) is the linear translational dynamics for robot k. fk
t

embeds the inter-manipulator obstacle avoidance constraint
and is constant over the horizon Hr. Input fk

t is clamped to
0.5‖uk

max‖ and uk
max ≥ uB

max. The DMPC is constrained to
choose the uk

t in the range of 0.5uk
min ≤ uk

t (n) ≤ 0.5uk
max

for ‖fk
t ‖ > 0. This ensures that fk

t does not force the robot
out of its defined regional constraint. However, if ‖fk

t ‖= 0 at
t, then the MPC controls the full range of uk

t . Eq. (23) is a
linear regional constraint for robot k over the control horizon
where, Regk

t (n+ 1) ∈ R4×2 and bk
t (n+ 1) ∈ R4. uk∗

t (0) is
used as control input for mobile base k at time t. A feasible
inverse kinematics solution can be computed using gk

t and
xk∗

t (1) and the equations mentioned in Sec. V-C.1.

VI. RESULTS AND DISCUSSION

In this section, we detail the results of our proposed motion
planning algorithm. The DVB MPC and the decentralized
formation MPC are both numerically solved using the op-
erator splitting quadratic program (OSQP) solver [20]. The
payload motion planning is solved as a sequential quadratic
program. The proposed algorithm is implemented in Matlab
and runs on an Intel i7-7700HQ CPU. The algorithm is
validated using multiple simulation environments varying in,
(i) the number of static obstacles and dynamic obstacles, (ii)
the number of robots, (iii) the dimensions of payloads, and,
(iv) trajectories of a moving target. These results are best
viewed in the video https://youtu.be/9EKj7RwRs_4. For
the sake of analysis and brevity, we investigate and discuss
one of these environments in detail.

https://youtu.be/9EKj7RwRs_4


(a) (b)
Fig. 6: (a) Top view and (b) Isometric view of the system navigating through tight spaces. The DVBs over the planning horizon are visualized in red. The robots are represented
as blue cylindrical mobile bases with mounted manipulators (in black). The payload is visualized in blue.
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Fig. 7: (a-d) DVB trajectory and scale. (e-f) payload roll and roll angular velocity.

We consider an environment having three closely spaced,
static obstacles and four randomly moving dynamic obsta-
cles. A target T navigates at approximately 0.4 ms−1 to
provide high-level motion goals to the system. Six mobile
manipulators are tasked with transporting a payload of
dimensions 3 m× 3 m× 0.1 m through this environment
while tracking T . Fig. 6 showcases top and isometric views
as the system navigates through tight spaces, using the
proposed hierarchical motion planning algorithm. The dashed
black line is the trajectory followed by T . The three static
obstacles are visualized as pink cylinders, and the four
dynamic obstacles are visualized as black cylinders. Green
lines highlight the trajectories of dynamic obstacles. The
motion of the system is best visualized in the following
video https://youtu.be/9EKj7RwRs_4. Dynamic obstacles
are adversarial and hinder the motion of the system as
observed in Fig. 6 and the video.

Deformable Virtual Bounding Box: The state and control
limits are [−30,−30]≤ xB

t ≤ [30,30] in m and [−2,−2] ≤
uB

t ≤ [2,2] in ms−1 respectively. The control horizon H has
an effect on real time performance. For H = 12 time steps
and ∆t = 0.1 s, the average execution time tavg = 0.17 s.
dmax = dmin + 1.8 m defines fB

t ’s region of influence with
an Fmax = 2.5 ms−1. The limits on DVB scale 1.3 m≤ rB

t ≤
2.12 m are defined using the projection of payload for φt = 0

and φt = φmax respectively. In Fig. 6 the red rectangles shows
the motion of the DVB for H time steps. The payload (blue
rectangle) orients itself to lie within the defined workspace.
Each mobile base (blue cylinders) operates within its regional
constraints (small pink rectangles) and each manipulator (in
black) has a collision-free kinematically feasible configura-
tion. Fig. 7(a-d) showcases the DVB pose xB

t = [xB
t yB

t ψB
t ]

and scale rB
t over the experiment duration. Notice that Fig. 6a

and Fig. 7 are divided into three smaller timelines τ1, τ2, τ3.
In τ1, the DVB deforms from rB

t = 2.12 m to rB
t = 2 m

to avoid a dynamic obstacle and subsequently expands for
about 10 s. In τ2, the DVB navigates through a narrow gap
between static obstacles S1, S2 causing a decrease in rB

t .
Next, it encounters multiple dynamic obstacles causing a
sharp decrease to rB

t = 1.75 m, as observed in Fig. 7(d). In
τ3, rB

t increases to 1.92 m until the DVB performs a sharp
left turn around S3 to keep track of T . Finally, rB

t gradually
increases 2.12 m as obstacles become sparse. The repulsive
fields fsta, fdyn aid in maintaining a distance of at least rB

t
w.r.t static and dynamic obstacles throughout τ1, τ2 and τ3.
In obstacle-free regions, f e

t restores rB
t to rmax. In Fig.7(a,b)

the three static obstacle positions S1,S2,S3 are overlaid (in
pink). Observe that xB

t and yB
t simultaneously do not intersect

the same pink line (Si) at the same exact time instant. This
validates static obstacle avoidance.
Payload Motion Planning: The limits on motion planning
are 0 ≤ φt ≤ 2π

5 in rad and −1≤ ωt(n) ≤ 1 in rads−1.
For a control horizon Hp = 5 and ∆t = 0.1 s, tavg = 0.05 s
was observed. The payload’s roll φt varies in accordance
with rB

t using non-linear optimization of Sec. V-B. Fig. 7(e,f)
plots the variation of φt and ωt . We observe that the payload
rolls in accordance with rB

t and varies smoothly along the
trajectory thereby validating the proposed optimization.
Decentralized Formation Motion Planning: Each mobile

base is a cylinder of radius 0.2 m and height 0.2 m. The
control limits of the mobile base are −4 ≤ uk

t ≤ 4 in
ms−1. A tavg = 0.08 s was observed for Hr = 5. In this
experiment, m1,k

t =m2,k
t and m4−6,k

t = gk
t (co-axial wrist). The

link lengths are, ‖m2,k
t −m3,k

t ‖2 = 1.316 m, ‖m3,k
t −m4,k

t ‖2 =
1.484 m. The results of decentralized robot motion planning
are showcased in Fig. 8(a-d). The trajectories xk

t = [xk
t yk

t ] are
observed to be centered around xB

t (virtual formation leader)
and vary smoothly over time. The control inputs uk

t vary

https://youtu.be/9EKj7RwRs_4
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Fig. 8: (a-d) Mobile base position and control input. (e-j) Manipulator joint angles.

gradually over the trajectory and lie within the limits defined
by the MPC. The high frequency changes in uk

t around
100 s (τ2), in Fig. 8(c,d), can be attributed to low inter-
manipulator spacing due to low rB

t (see Fig. 7(d)), leading
to high fk

t . Fig. 8(e-j) showcase the variation in the joint
angles of manipulators over time. Notice that the variation
is smooth and the velocities of the joints lie in the range of
[−1 rads−1,1 rads−1]. Note that the variations in θ 4

t are just
angle wraparounds. These plots validate the efficacy of the
proposed decentralized formation controller.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, a novel kinematic motion planning algorithm
for cooperative mobile non-planar payload manipulation
in dynamic environments is presented. Three constrained
optimization problems are formulated to handle key chal-
lenges namely, (1) computationally scalable goal-directed
non-planar manipulation, (2) environmental obstacle avoid-
ance, and, (3) inter-robot obstacle avoidance. In future, we
plan to physically validate the algorithm on real robots.
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