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INTRODUCTION

Cuspidal robots are robots with at least one singularity free connected region, aspect,
with multiple inverse kinematic solutions (IKS). This allows cuspidal robots to change
solutions without crossing singularities. This doctoral thesis discusses upon the theoretical
study, classification, and application of cuspidal robots. The following sections detail the
scope of the thesis as well as summarizes the architecture and contributions presented in
the thesis.

Scope of the doctoral thesis

Before 1988, it was widely accepted fact in the kinematics community that all the
IKS of a robot lie in distinct connected regions. The belief was founded due to the initial
analysis of simpler robots that provided geometrical insights into different inverse kine-
matic solutions. For example, a 2R robot has two types of IKS commonly called as the
"elbow up" and "elbow down" configurations. A similar separation of IKS is possible for
anthropomorphic architectures with wrist partition at the end. The well known classifica-
tion of the IKS of such robots is wrist(flip/No-flip)-shoulder(Right /left)-elbow(Up/down)
and is often reported as the NRU configuration. The belief was further corroborated by
a proof presented in 1986 [BL86] which went unchallenged as it provided a mathematical
assertion to an already known (rather accepted) fact.

In 1988, Innocenti and Parenti-Castelli presented a numerical analysis of two 6R robots
that broke the accepted norms in the community [PCI88]. These robots followed a solution
changing path and the plot for the determinant of the Jacobian matrix never changed
signs. Since then, robots with similar properties have been analyzed by researchers from
different countries. A detailed analysis on 3R orthogonal robots was presented in 1992
[Wen92], and the term cuspidal was coined in 1995 [EOWO95] due to the existence of cusp
in the workspace of the robots exhibiting this "special" property. Algebraic tools were used
to provide a complete analysis of 3R orthogonal robots establishing different classifications
and criterias for cuspidality [BWC04; Wen04]. The algebraic analysis though global and

complete, is computationally expensive and thus is cumbersome to extend to generic 3R
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Introduction

robots.

There did not exist an algorithm to decide upon cuspidality of a given generic 6R robot.
An identification methodology can help designers decide upon the design parameters of
robot in order to choose a noncuspidal robot. One of the most important limiting factor
to the analysis of 6R cuspidal robots till early 2000’s was the availability of a generic
algorithm to resolve the inverse kinematic solutions of the robots. The wrist partitioned
anthropomorphic architecture has a simplified geometry and thus provides an analytical
solution [Ben91]. The inverse kinematics of generic 6R serial robots on other side was
once termed as the ‘Mount Everest of kinematics’ [Fre73|. Several algorithms with varying
approaches have been proposed since then, and we have algorithms that provide algebraic

solutions for inverse kinematics of generic 6R robots [HPS07].

With the rise of application of robotics in daily life, robots have started moving out
from strictly controlled industrial environment to a collaborative setup. In order to adapt
to these requirements, the industry has implemented unconventional designs exploring ar-
chitectures without a wrist partition. The limitation on a deciding methodology combined
with low awareness on cuspidality have resulted into several existing robots to be cuspidal.
The multiple regions with varying number of IKS in cuspidal robots leads to interesting
properties that can be taken advantage of in certain cases while in other cases proves to
be perilous. As we move towards more physical human-robot interaction, it is important
to study cuspidality, and its implications on trajectory planning of cuspidal robots. Any
accidents caused due to lack of awareness on cuspidality may result in a setback to the

trust in collaboration with robots.

This doctoral thesis first presents theoretical study on cuspidality in generic 3R robots.
Geometric interpretation of the inverse kinematic model (IKM) presented in [Pie68;
Tholb] is revisited to elucidate important observations on the nature of IKS. A com-
parative study of nonsingular change of solutions in the joint space, workspace, and its
geometric interpretation allows to prove the necessary and sufficient condition for a generic
3R robot to be cuspidal. In this process, the existence of reduced aspects (sub-regions of
aspects with unique IKS) in generic 3R robots is proved too. The geometric analysis of
3R robots shed light on a new perspective to classify 3R robots that depends on the
conic related to the kinematic polynomial. In [Pag08], the homotopy analysis presented a
direction for counting the number of aspects in a generic 3R robot. Two of the presented
homotopy classes namely 3(0, 0) and 4(0, 0) were suspected to exist which meant that

the maximum number of aspects for a generic 3R serial robot would be five. A compar-
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Introduction

ative analysis of singularities in the joint space and conic interpretation confirms that
these classes do not exist for 3R serial robot, thus allowing to close the topic of maximum
number of aspects for a generic 3R robot.

The cuspidality analysis of simplified geometry is important from the point of view
of applications. Almost all industrial robots have simplified geometry, and the analysis
of constrained architectures allow us to analyze the determinant of the Jacobian matrix.
The presented work shows that even though some simplified geometries lead to noncus-
pidal behavior, there exists others whose analysis remains challenging. A classification of
robots with either orthogonal or parallel axes is presented to allow designers to choose
from variety of designs that are noncuspidal. Later, a detailed framework for deciding cus-
pidality is presented that can analyze robots with collision constraints and joint limits.
The thesis highlights a certified algorithm [Cha+22] as well as a numerical approach to
deciding cuspidality. It is shown that almost all generic robots are cuspidal by nature.
Cuspidal robots lead to several issues in path planning. It is suspected that ABB IRB
6400C robot was recalled by the company after facing issues in path planning due to its
cuspidal nature [WC22]. Recently, the issues in path planning of another cuspidal robot,
MICO from Kinova robotics was identified in industry [Ver21]. Such reports of path plan-
ning issues in cuspidal robots have gone unnoticed, and the users generally blame the
motion planning algorithms for a path failure.

The thesis details the issues in a commercial cuspidal robot, JACO Gen2 (non-spherical
wrist), and discusses the implications of crossing multiple regions with varying IKS. It
further points out issues in unique identification of ‘configuration’ of yet another cuspidal
robot in industry, FANUC CRX-10ia/L. Most of the robots that are identified as cuspidal
are sold in the market as cobots (fancy for collaborative robots) . Taking this point
under consideration, the thesis further highlights why cuspidal robots should especially
be avoided in collaborative applications. To utilise existing cuspidal robots in industrial
setup, a detailed study for different types of paths and scenarios possible in path planning
of cuspidal robots is discussed. A path planning framework is proposed that considers
all the cases prior to the execution of the trajectory. An optimised trajectory planning is

presented as an application of cuspidal robots to commercial robots.
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Summary

This doctoral thesis is divided in four chapters and their main objectives are as follows:

1. State of the art and preliminaries

Chapter 1 presents the state of the art of all the topics related to cuspidal robots.
It presents a literature review on the inverse kinematics of 6R robots, and later on the
evolution of analysis of cuspidal robots. Later, the theoretical background for the cuspi-
dality analysis is presented. It discusses the geometric interpretation of the IKM of a 3R
robot as presented by Pieper [Pie68]. Later, certain terminologies developed for 3R robots
in previous works [WEO96; Wen04; EOWO95] is defined for ease of understanding of the
proofs to follow. The chapter then presents concepts related to the cuspidal analysis of nR
nonredundant robots. Singularities, and nonsingular change of solutions (its verification)
with their representation in the joint space, workspace and the geometric interpretation

are shown for comparative analysis.

2. Cuspidal analysis of 3R robots

The orthogonal 3R robots have been extensively analyzed in the past [Bur89; WEO96;
Pag08; BWC04]. In [EOW95], it was stated that the cusp point in the workspace of a 3R
orthogonal robot is necessary and sufficient condition for orthogonal 3R robots to be
able to perform nonsingular change of solutions. Later, [Cor05] established that a cusp
point was a sufficient condition for a generic 3R robot to be cuspidal. In chapter 2, a
necessary and sufficient condition for a generic 3R robot to be cuspidal is presented. It
utilises geometric interpretation of IKS, singularities and nonsingular change of solutions
to present a proof by contradiction. As a result, the existence of reduced aspects in a
generic 3R robot is proved by the same analysis too.

Geometric analysis of 3R robots is further extended to present classification of 3R
robots based on the conic represented by the inverse kinematic polynomial. Each conic
representation have interesting cases which allow a completely new perspective on the
classification of 3R robots. Several sufficient criterias for a 3R robot to have maximum
of two or four IKS are elucidated from the analysis. The geometric analysis combined
with interpretation of IKS in the joint space is used to show nonexistence of a previously

suspected homotopy classes 3(0, 0) and 4(0, 0). This allows to conclude upon the maximum
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number of connected regions present in the joint space of a generic 3R robot.

3. Cuspidal analysis of 6R robots

The cuspidal analysis of a 6R robot is not well reported earlier. The only published
work on cuspidality analysis of 6R robots is the anthropomorphic wrist-partitioned archi-
tecture, and UR) from Universal robots [CSEDS20]. Both these examples are of noncus-
pidal robots with maximum eight IKS and the determinant of Jacobian matrix factoring
into three distinct components. In Chapter 3, the cuspidality analysis of simplified ge-
ometries of 6R robots is presented initially. It discusses cases of robots with wrist located
at the beginning, end, and in the middle of the chain. It further discusses 6R robots with
three consecutive parallel axes present in the serial chain.

The detailed framework for deciding cuspidality of all 6R robots is presented in the
later section. It discusses the building blocks of deciding cuspidality, and revisits the cer-
tified algorithm in [Cha+22] that uses tools from Real Algebraic Geometry and roadmap
algorithms to decide cuspidal nature of the robot. The thesis presents a numerical ap-
proach for deciding cuspidality which is capable of considering collision constraints an
joint limits of the robot. It uses Nelder Mead approach, time-optimal point-to-point tra-
jectory planning to check connectivity of IKS in the joint space. Cuspidality analysis of
3240 robots including almost all the robots present in industry is presented as an applica-
tion of the proposed framework. It is noted through this analysis that almost all generic

robots are cuspidal by nature.

4. Path planning in cuspidal robots

Chapter 4 presents path planning issues in cuspidal robots. It presents two cases of
existing commercial 6R robots that are cuspidal. A detailed kinematic analysis of both
these robots is presented to motivate the reader about the interesting (a.k.a dangerous)
properties of cuspidal robots. The FANUC CRX-10ia/L is used to highlight the issues of
classifying sixteen solutions into eight categories. The misidentification of ‘configurations’
of this robot leads to a lot of confusion for the user. Later, JACO Gen2 (non-spherical
wrist) is used to highlight the consequence of crossing multiple regions of varying IKS. This
chapter discusses the dependence of feasibility as well as repeatability of the trajectory on
the initial choice of IKS. It later motivates the reason to not implement cuspidal robots

in collaborative applications where the trajectory is not pre-planned.
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This chapter later presents a path planning framework for cuspidal robots that con-
siders different types of trajectories possible in cuspidal robots. The different cases of
scenarios arising in cupidal robots are discussed so that a future path planning optimi-
sation algorithm can take cuspidality of a robot into account. Later a time optimised
point-to-point trajectory planning for Jaco robot is presented as an application of the

framework to commercial robots.
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CHAPTER 1

STATE OF THE ART, AND THEORETICAL
BACKGROUND

This chapter sets a context of cuspidal robots and the evolution of research in this
field. It provides a detailed history of cuspidal robots and the development of its theory to
allow the reader get an overview as well as appreciate the presented work. The literature
review is kept limited to cuspidal robots and inverse kinematics of 6R robots as they are
closely related topics. Later, the theoretical context for the analysis of cuspidal robots
presented in the thesis is put forth. Several definitions that are specific to cuspidality
analysis are revisited and new definitions are put forth at the same time. The mathematical
background utilised to implement different algorithms skipped from this chapter as it can
be found in the initial research thus keeping the preliminaries focused on the contributions
of the thesis. The algorithms wherever needed are mentioned in the Appendix of the

thesis.

1.1 State of the art

Cuspidal robots are robots that have at least one singularity free connected region,
aspect [BL86|, with multiple inverse kinematic solutions (IKS). This implies that cuspi-
dal robots can travel from one IKS to another without encountering a singularity. This
property is applicable to parallel robots too [MD99], but it will not be discussed in the
presented thesis (readers are directed to [WC22]). The following literature review de-
tails upon the work on serial cuspidal robots, and inverse kinematic solutions of nR non

redundant robot.
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1.1.1 Cuspidal robots: theoretical analysis

The possibility of changing IKS without crossing a ’special’ configuration was never
considered till the late 80s as it was strongly believed that the IKS always existed in
distinct connected regions. The reason to believe the same was a quick analysis of 2R
robots, and anthropomorphic robots with wrist partition. As these robots were widely
used successfully across the industry, other designs were not analysed in depth. This
made the analysis of nonsingular change of solutions a moot point. To bury the topic
even deeper, a mathematical proof was presented to confirm that the IKS of a nR robot
lie in distinct aspects [BL86].

This would change in 1988 when Innocenti and Parenti-Castelli produced two 6R
robots who were able to travel from one IKS to another without crossing a singularity
[PCI88|. Similar work was simultaneously reported by Burdick [Bur89] at CalTech where
he presented an analysis of 3R regional manipulators. This result too went quite unno-
ticed, and was not given enough attention in the kinematics community. The research on
3R robots capable of changing IKS without crossing singularities was extended further
by Wenger [Wen92|. The work presented the concept of characteristic surfaces after iden-
tifying that the number of IKS did not remain constant over an aspect for such robots.
Later in 1995, Burdick presented a classification of 3R robots based on singularities, and
put forth three conjectures. First two of them were related to the solvability as well as
genericity of 3R robots and were refuted in [WE9T7].

In 1996, Wenger and El Omri [EOW95] noted that a cusp point in the workspace of
3R robots was a necessary and sufficient condition for a 3R orthogonal robot to be able to
perform a nonsingular change of solutions. This paper coined the word ’cuspidal robots’
due to the results on the analysis of orthogonal 3R robots. In 1998, Wenger presented a
classification of 3R robots using homotopy classes [Wen98] which was extended in 2004
[CRO4] that implemented computer algebra tools. Later in 2004, Baili [BWC04] presented
an extensive and finer classification of 3R robots based on number of cusps based on
algebraic analysis. A classification for a family of 3R robots was presented based on the
topology of the workspace. It provided algebraic conditions for the bifurcation of the
parameter space detailing domains for noncuspidal robots. In 2005, a D-H-parameter
based condition for a 3R orthogonal robot to have maximum four IKS was presented
[WCBO05]. This provided a condition for designers to choose a robot with maximum two
IKS which is always a noncuspidal case. In the same year, using Whitney’s theorem

[Whib5], Corvez [Cor05] noted that the existence of a cusp in the workspace of a 3R serial
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robot is equivalent to a nonsingular change of solutions in a sufficiently small neighborhood
of the cusp. This established the sufficient condition for a generic 3R robot to be cuspidal.

In 2006-07, Ottaviano presented workspace topologies [OCHO07] of 3R robots and
workspace analysis using level sets [OHCO06] for 3R robots. An exhaustive study of workspace
topologies for 3R robots with at least one parameter set to zero was presented by Zein
[ZWCO06] showing several examples whose workspace was well connected and had 4 IKS.
In 2008, Paganelli presented complete homotopy classification of 3R robots. His work fur-
ther presented two extra possible classes of homotopy namely 3(0, 0) and 4(0, 0). The
later homotopy class if existent, would show that a generic 3R robot has a maximum of
five aspects.

Several studies were presented for analysis of singularity loci of a 3R robot. The initial
algebraic work of Kohli and Spanos [KS85] showed that relation of roots of the inverse
kinematic polynomial with singularity. Later, Smith and Lipkin [SLI0; SLI3] presented a
geometric interpretation for singularities, nodes and cusps in 3R robot workspace. Catas-
trophe theory was implemented for similar analysis by Thomas and Wenger [TW11].
Later, Thomas presented the analysis of singularity loci of 3R robots using the distance
geometry approach reducing the IKM to analysis of two coplanar ellipses [Thol5]. Benoit
[Ben17] presented a quantitative analysis of robots using topology and interval analysis.
As cuspidality is a property dependent on the D-H parameters, it is important to study
it in adaptable and reconfigurable robots. In 2016, Brandstotter [Bral6] presented cus-
pidality analysis in modular 6R serial robots. Recent studies on metamorphic 3R serial
robots [KPMA19] further emphasize the importance of cuspidality analysis of robots with
adjustable D-H parameters.

1.1.2 Cuspidal robots: industrial application

In industries, cuspidal robots are not well-known for a good reason. Before the intro-
duction of non-redundant ’cobots’, almost all the industrial arms consisted of a simplified
geometry of anthropomorphic wrist-partitioned architecture. This meant that the IKM
had analytical solutions and the IKS were separated by singularities. Not only were they
separated by singularities but also provided a geometric intuition of the ’configurations’
such as elbow up, shoulder right and wrist flip. Some of the robots known to deviate from
the conventional designs were the ABB IRB 6400C, GMF150 and Fanuc P250iB [WC22]
(refer to Figure 1.1). The ABB robot changed the permutation of first two axes that

turned the anthropomorphic architecture to an orthogonal architecture. Due to the link
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Chapter 1 — State of the art, and theoretical background

lengths chosen, this robot was cuspidal by nature. The robot was later recalled by ABB,
and authors of [WC22] believe that the problems in path planning of cuspidal robots must
have played a role in such decision. It has been noted that just tweaking the lengths of the
robot would have rendered the robot noncuspidal [WC22]. GMF150 and Fanuc P250iB
introduced an offset in the wrist, and were implemented for specific jobs such as painting
jobs. The offset in the wrist alters the kinematic map and the number of IKS is not lim-
ited to eight anymore. Further analysis has shown that both these robots are cuspidal by
nature. The joint limits play an important role limiting the workspace of the robot thus
virtually avoiding the nonsingular change of solutions. The strong joint limits on GMF150
results into the operational space with maximum 2 IKS that are always separated by a
singularity [WC22].

Another well known example of a robot with an offset in the wrist is the UR series
from Universal Robots. The UR5 robot was analysed by Capco [CSEDS20] using computer
algebra and it was shown that the robot has eight connected regions and the eight IKS of
this robot are always separated by singularity. To the best of the author’s knowledge, this
is the only geometric architecture with an offset in the wrist implemented as an industrial
robot and is a noncuspidal arrangement. Most of the cobots that exist in the market which
have introduced the offset in the wrist by keeping the anthropomorphic architecture are
cuspidal by nature (discussed in details in Chapter 3). Some of the analyzed robots include
the widely used Jaco Gen 2 (non-spherical wrist), FANUC CRX-10ia/L, and Yaskawa
HC10DTP. The Jaco robot and CRX series is discussed in details in Chapter 4. The
path planning issues arising from existence of multiple kinematic regions with varying
IKS are presented in [SCW23|. The cuspidality property can proved to be advantageous
if the workspace is analysed completely, the trajectory is pre-planned considering the
option for nonsingular change of solutions. Marauli [Mar+23| recently presented a time
optimal point-to-point trajectories for cuspidal robots that included the consideration of

nonsingular change of solutions for the first time.

1.1.3 Inverse kinematics

The evolution of the algorithms in inverse kinematics of 6R robots is important to have
an idea of the strong correlation between the cuspidality analysis and generic algorithms
for solving inverse kinematics. Kinematic analysis of 6R serial arms started more than
half a century ago. The earliest kinematic analysis can be found in the work of [Pie68] in

which the geometric interpretation of simplified geometries, soluble robots, was presented.
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GMF P-150

(b) GMF 150 robot
(c) FANUC 250ib robot

Figure 1.1 — Some of the first unconventional designs of industrial robots.
Image credits: [WC22].
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The work of Pieper,[Pie68], is well known to be the one of the first contributions towards
6R serial chains. He classified particular geometries of 6R serial chain, termed as soluble
robots, that could be solved by decoupling the position analysis from the orientation. This
work showed the inverse kinematic model (IKM) of a 3R serial chain as an intersection
of a conic with a unit circle. This analysis has further helped in extending the cuspidality
analysis for 3R serial chains [Sal+22b; Thol5; Sal+22a; SLI0]. From 1973 to 1985, several
proposals were made regarding the IKM for 6R serial chains [Rag+90; Fre73; Ang85]. In
1986, [Pri86] proved that the 6R serial arm have maximum 16 solutions over C using
projective geometry. An analytical solution to an anthropomorphic architecture with an
offset in the wrist was proposed by [Tri415] using geometric methods. Inverse kinematics
for similar architecture was proposed by [GL14; ZBSO21] with algebraic methods. One
of the most recent advancement in the inverse kinematics of 6R serial chains was pre-
sented by [HPS07] where the geometric interpretation of the IKM was presented using
dual quaternion representation and Study quadric (S?), a six dimensional quadric in P7.
[HPSO07] showed that a generic 6R serial chain can be decomposed into two separate 3R
serial chains whose workspace can be interpreted as the intersection of parameterized 3-
space with Study quadric. The intersection of two 3-spaces, derived from four hyperplanes
in P7 each, with the Study quadric gives the inverse kinematic polynomial required to
solve the complete chain. The advantage of this method is that it uses equations linear
in each joint value and thus is fast and accurate. It does not miss any IKS as we always
get 16 solutions in C. This method is extended for serial chains with prismatic joints too
[CM19].

1.2 Preliminaries

1.2.1 Concepts related to 3R serial robot

This section covers the preliminaries necessary for the cuspidality analysis of a 3R
serial robot. It begins by revisiting the geometric interpretation of the IKM proposed
by Pieper [Pie68]. A presentation of several introductory concepts related to conics and
their properties follows, as these hold significant relevance for the subsequent proofs.
The section then introduces established definitions for cuspidal robots as mentioned in
[Wen92; Wen04; BWCO04], as well as conventions employed for the geometric description

of the robot. An explanation of relevant definitions and their interpretations in different
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spaces, such as joint space (J), workspace, and the c3ss plane (defined later), aims to
provide the necessary background for the proof in Chapter 2. Finally, the section defines

new terms specifically for the cuspidality analysis of generic 3R serial robots.

Concepts related to the inverse kinematics model

Kinematic analysis of 3R serial robots was first published seven decades ago. The
earliest kinematic analysis can be found in the work of [Pie68] in which the geometric
interpretation of simplified geometries, soluble robots, was presented. Later, algebraic tools
were introduced to obtain the inverse kinematic polynomial and solve inverse kinematics
for a generic 3R serial robots [KS85]. In this section, the preliminaries required for the
analysis of IKS of a generic 3R serial robot. In this paper, original Denavit-Hartenberg
parameters (D-H parameters) are used, as shown in Figure 1.2. The four parameters
known as D-H parameters are linked to a specific convention used for connecting reference
frames to the links of a robot manipulator or spatial kinematic robot [DH55]. These four
transformation parameters used to denote the transformation of (i + 1) frame with
respect to i*" frame are defined as:

d;: offset along z; to the common normal

0;: angle about z;, from x; to z(41)

a;: length of the common normal. This is the radius about z;.
a;: angle about (1) from z; to z(q)

Generic 3R serial robot: A property that holds true for "almost all" of the functions
is termed as a generic property of that class of functions. A general square matrix is
invertible, and a generic polynomial does not have a root at zero. A generic property of a
space is a property that holds at "almost all" points of the space (Sard’s theorem). If we
extend the same rationale, a robot qualifies to be a generic robot if there are no constraints
on the geometric shape of the robot. But, the term generic for serial robots was defined
in [PL92] which presented the relation of genericity with the nature of singularities of the

robot. As per the work in [PL92|, a generic 3R serial robot is defined as:

Definition 1. A 3R serial robot is generic if there exists only rank-2 singularities, i.e.,
the locus of critical points in J has no self-intersection or does not include any isolated

point singularity.

This definition of generic robots is used in the kinematic community widely since

its inception [Pag08; BWC04] and Figure 1.3 illustrates the singularities for generic and
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Axis i+1

Figure 1.2 — The D-H parameter notations as presented in [DH55].
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(a) Orthogonal generic robot (b) Generic robot (c¢) Non-generic robot

Figure 1.3 — Examples of generic and non-generic cases of a 3R serial robot
Robot parameters (1.3a): d = [0, 1, 0], a = [1, 2, 2], « = [Z, Z, 0]

2 27 20
Robot parameters (1.3b): d = [0, 1, 0], a = [1, 2, 3], « = [%, %, O]
Robot parameters (1.3c): d = [0, 1, 0], a = [1, 2, 4], a = [5,5,0].

non generic robots. The issue with this definition is that the orthogonal 3R serial robots,
robots with the constraint: oy, ay equal to £7, are generic by the above definition. An
example of the joint space of an orthogonal 3R serial robot with only rank-2 singularities

is presented in Figure 1.3a.

In the presented work, the definition of a generic 3R serial robot is as defined by [PL92].
This definition allows us to classify robots with isolated singularities as non-generic which

is helpful in the analysis discussed in coming chapters.

Inverse kinematic model of 3R serial robot

Solving the inverse kinematics of 3R serial robots was first reported in [Pie68] where
it was noted that the solutions correspond to the intersection of a conic with a circle in
czs3-plane, where c3 and s3 denote cos 63 and sin 03, respectively. The solution is presented
briefly, as it has a key role in the proof to follow.

Let, R = p* + 22, where p* = 22 4+ y* = g(0s,05). The terms R and z can be written as

R = (F1 COS 92 -+ F2 sin 92) 2@1 + F3
z = (F} sinfy — Fy cosfy) sinay + Fy
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Figure 1.4 — Intersection of the conic and unit circle in c3s3-plane for robots with different
D-H parameters. Every intersection is an IKS for the given pose.

Robot parameters (1.4a): d = [0, 1,0, a = [1, 2, 3], a =[5, %, 0], (p, z) = (2.46,0.15)
Robot parameters (1.4b): d = [0, 1, 0], a = [1, 2, 3], a = [%, %, 0], (p, 2) = (2.33,—0.26)
Robot parameters (1.4c): d = [0, 1, 0], a = [1, 2, 5], & = [£,5.0], (p, 2) = (2.4,0.6).

where F; = g;(03), for i = 1,..,4. Upon rearrangement, we obtain the general equation of
a conic in c3s3-plane as given in (1.1).
Ay €3+ 24, 383 + Ay 53+ 2B, c3 + 2B, 53+ C =0 (1.1)

The coefficients of the conic are skipped for brevity, but they are functions of the D-H

parameters and of (R, z) as shown in (1.2),

Age = hi(ay, az, a3)
A:):y = hz(al,a2,a3,d2,042)
Ay, = hs(ay, a2, as, dz, 04, az) (12)
B, = hy(aq, ag,a3,ds, ag, R)
By = hs(a1, a2, a3,ds, ds, a1, a0, R, 2)
C = hg(ay, as, as, do, ds, a1, an, R, 2)

The inverse kinematic solutions are defined by the intersection points between the conic
(1.1) and the unit circle ¢34 s2 = 1 in c3s3-plane. This conic can be a hyperbola, parabola
or an ellipse depending on the D-H parameters and end-effector pose. An example of each
one is shown in Figure 1.4. Performing the half tangent substitution, ¢ = tan %3, we get a

quartic inverse kinematic polynomial M (t) = at* + bt® + ct* + dt + e similar to the one
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mentioned in [KS85]. The coefficients of M (t) are functions of the D-H parameters and
of R and z. The solutions to the polynomial equation, M(¢) = 0, are the intersection
points between the conic and the circle and are labeled as my,, where ¢ € {3, j, k,l} in

the c3s3-plane.

1.2.2 Singularities

The Jacobian of f at a certain configuration, denoted by J(q), is the Jacobian matrix

of the robot at configuration q:

J(q) = “oq (1.3)

The singularities are the critical points of f in the J and correspond to the set of
all configurations in the joint space where the Jacobian matrix loses rank, i.e. when the
determinant of J is zero. The critical values are the images of the critical points in the
workspace (W). It is known that the roots of the inverse kinematic polynomial have
multiplicity 2 or more at a singularity [KS85]. The algebraic expression of the singularity
condition for an arbitrary 3R manipulator is recalled in Appendix A.1. The singularity in
the workspace, the locus of critical values, is the image of the locus of critical points in
the workspace and can be obtained from the inverse kinematic polynomial. The critical

values in the workspace are those points where the following relation is satisfied:

M(t) = 0
DM (1)
a0

Where, t = tan 92—3 and M (t) is the quartic inverse kinematic polynomial related to a

3R serial robot. The resulting algebraic expression is very large and is not reported here,
see [KS85] and [TKA93] for more details.

With the conic representation, the geometric interpretation of a singularity associated
with a double root is a point where the conic is tangent to the circle, as shown in Figure
1.5. The geometrical interpretation of a singularity associated with a root multiplicity
higher than 2 is discussed in details in [SLI0; SL93].

It is known that the singularities of 3R serial robots are independent of the first joint
angle, 0, [PL92]. This allows us to reduce the 3-dimensional joint space to T? parameter-

ized by 6, and 63. In this part, the joint space, J, will be used for the reduced joint space
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Figure 1.5 — Types of critical values in the workspace and corresponding tangency in
c3S3-plane.

Robot parameters (1.5a): d = [0, 1, 0], a = [1, 2, 3], a = [-Z, 2, 0], (p, 2) = (2.913,0.1).
Robot parameters (1.5b): d = [0, 1, 0], a = [4, 2, 6], a = [-F, 7, 0], (p, 2) = (2.84,3.79)
Robot parameters (1.5¢): d = [0, 1, 0], a = [1, 2, 3], a = [-Z, %, 0], (p, 2) = (2.48,1.96).
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in T?. Consequently, the workspace is symmetric about the first joint axis. Assuming un-
limited joint travel, it can be described by a half cross-section in the plane (p = /22 + 4?2,

2).
Definition 2. A node is a point in the workspace of a 3R serial robot where the inverse

kinematic polynomial, M(t), admits two distinct roots of multiplicity two.

Definition 3. A cusp is a point in the workspace of a serial robot that satisfies the

following conditions:

M(t) =0
M)y =0 (1.4)
i) =0

where M (t) is the inverse kinematic polynomial of degree four for a gemeric 3R serial

robot.

In Figure 1.5¢, the robot has four cusps located at the corners of the inner region of

the workspace. The cusp has to satisfy:

() #0 (15)

in order to exclude quadruple roots. However, it was shown in [PL92] that quadruple roots
cannot exist in generic 3R robots, and the condition in (1.5) is thus always satisfied here.
So, in the context of a generic 3R serial robot, the cusp in the workspace relates only with
satisfying condition in (1.4).

A n-solution region in the workspace is always bounded by the locus of critical values

which, for a generic 3R serial robot, can include cusps and/or nodes.

Definition 4. The components of critical values are the connected components of the

locus of critical values, upon excluding all cusps and nodes.

Figure 1.6 shows an example workspace of 3R serial robot with the components of the

critical values formed by the presence of four cusps in the workspace.

Definition 5. A binary robot is a 3R serial robot with mazimum 2 inverse kinematic

solutions for any feasible position.

Definition 6. A quaternary robot is a 3R serial robot with at least one reachable position

with 4 inverse kinematic solutions.
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Figure 1.6 — An example showing the four components of a critical values in the workspace

of a 3R serial robot. Robot parameters: d = [0, 1, 0], a = [1, 2, %], a=[-75, 7,0

1.2.3 Concepts related to nR serial robots

In this section, the definitions related to a non redundant nR cuspidal robot are de-
tailed. The previously known definitions of ‘configuration’ are revisited and redefined to
make a distinction arising in cuspidal robots. Few known definitions are presented for
clarity and new definitions relevant to Chapter 3 and Chapter 4 are introduced. The defi-
nition of cuspidal robots is presented at the end of the section. Some of the definitions in
this section are explained with an example of 3R serial robot, but are applicable to any

non redundant nR serial robot.

Definition 7. An IKS that can be uniquely identified, either geometrically or analytically,

is called a configuration of the robot.

Commonly known examples of configurations in the 2R serial robots are the elbow up
and elbow down configurations. These configurations are generally identified because of
the factors of the determinant of the Jacobian. The conventional 6R serial robot such as
KUKA KR5 is known to have maximum eight IKS and are separated into eight different
configurations. If we denote the elbow position, shoulder position, and the wrist position
in binary, then the eight configurations for such a robot are shown in Figure 1.7. The
terms configuration and IKS have been used interchangeably in the past [Wen04; Bral6],

but in this work we mark a distinction between them. Changing from one configuration
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to another necessarily means that the two IKS are separated by a singularity such that
the 'operation mode’ does not change unless we cross the singularity. The main difference
between a configuration and an IKS is that a configuration allows one to identify the
operation mode of the robot without ambiguity. This can act as a type of classification
when the configurations are identified by geometric differences, e.g. elbow up configura-
tion. An IKS on the other side is simply a pre-image of the pose in the workspace. It is to
be noted that a geometric interpretation may not be always possible for configurations.
For example, in a quaternary noncuspidal 3R robot, the four solutions are separated by
singularities but the four IKS do not necessarily hold a geometric meaning. In such case
a given configuration can be checked for the aspect in which it belongs, and it can be
assured that the robot will stay in this configuration unless we have crossed a singularity.
An example of such a robot is shown in Figure 1.8a, where the four IKS are separated by
the singularities allowing one to claim that there are four configurations of the robots. The
Figure 1.8b on the other side is an example of a cuspidal robot with four IKS separated
in 3 aspects. The IKS separated by singularities can be uniquely identified at any given
time, and thus can be termed as configurations. The two IKS in the same aspect in this

figure cannot be uniquely identified, and so do not qualify as a configuration.

Definition 8. If S is the set of critical points in J, the pre-image of the critical values
excluding S is defined as the pseudosingularity curve, PS [TKA93; WEO96]:

S={qlq € J, detJ(q) = 0}

(1.6)
PS=fHf(S)\S

Definition 9. The aspects are the largest singularity free connected regions in the joint
space of a serial robot [BL86] (refer to Figure 1.9).

Definition 10. A reduced aspect is a region in the joint space that is bounded by the
pseudosingularity curve and/or the locus of critical points and which has a one-to-one

map to a bounded region in the workspace [Wen04].

fri Ap > WA € T, W, €W (1.7)

then A, is a reduced aspect if and only if f,. is a bijection. Figure 1.10 illustrates an

example of a set of reduced aspects in an aspect of the joint space for an orthogonal 3R
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(a) Configuration elbow(up)- (b) Configuration elbow(up)-shoulder(left)-
shoulder(right)-wrist(unflip) wrist (unflip)

(c) Configuration elbow(up)- (d) Configuration elbow(up)-shoulder(left)-
shoulder(right)-wrist(flip) wrist(flip)
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(e) Configuration elbow(down)-  (f) Configuration elbow(down)-
shoulder(right)-wrist(unflip) shoulder(left)-wrist (unflip)

(g) Configuration elbow(down)- (h) Configuration elbow(down)-
shoulder(right )-wrist(flip) shoulder(left)-wrist (flip)

Figure 1.7 — The eight configurations of a wrist-partitioned arm enumerated in binary to
denote the positions for elbow-shoulder-wrist.
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(a) Joint space of a noncuspidal robot with  (b) Joint space of a cuspidal robot with 4
4 IKS in 4 aspect IKS in 3 aspect

Figure 1.8 — Joint space of a noncuspidal and cuspidal robot. On the left, we have 4 as-
pects and four IKS separated by singularities and thus a ’configuration’ can be uniquely
assigned. On the right a robot has 4 IKS distributed in 3 aspects and no unique classifi-

cation is possible.
3<
2<
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1<

03
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2<
3 -2 -1 0 1 2 3
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Figure 1.9 — The two singularity free connected regions, called aspects, in joint space for

a 3R serial robot. Robot parameters: d = [0, 1, 0], a = [1, 2, %], a=[7, 5,0
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cuspidal robot. The blue lines are the locus of critical points and critical values in the
joint space and the workspace, respectively, while the red lines are the pseudosingularities
present in the joint space. Note that the pink and yellow regions in the joint space map

to the same region in the workspace. This means that there are two IKS in an aspect.

4 o

reduced aspect 1 \™—_ 4

reduced aspect 2

reduced aspect 3

p=va?+y? 65 (rad)

Figure 1.10 — An example showing a set of reduced aspects present in an aspect of the
joint space.
Robot parameters: d = [0, 1, 0], a = [1, 2, %], a=[-5,73,0]

Denote with
Zx ={a e T"[x= f(a)} (1.8)

the set of IKS for given EE-pose x. For a non-redundant robot, i.e. dim W = dimim f < n,
the TIKS set consists of a finite ny, number of IKS Z, = {q, ..., qn, }-

Definition 11. Let q; and qs be two points in J and o(qi,qa,t) where t € [0,1] is a
parameter such thatt = 0,0 = q; andt = 1,0 = q2, be a path between these two points,

then, o(qi, qs,t) is defined as a nonsingular change of solutions if and only if:

J(q17q27t) nNsS=o | q1, 92 € Iz (19)

In the workspace, a nonsingular change of solutions defines a loop as we end up at
the same position we started from. It has been noted in [Wenl19] that the nonsingular
trajectory in workspace always starts from a point in the workspace with four IKS. The
nature of this trajectory in the workspace will be studied in details in the next chapter.
In the c3s3-plane, the nonsingular change of solutions has an interesting interpretation.
If we have four intersection points, m;, m;, m; and m,;, between the conic and the unit

circle in c3s3-plane corresponding to the four IKS at a particular end-effector pose, then
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Figure 1.11 — Example of nonsingular change of solutions in the joint space and the
progress of det(J) on the path.

Robot parameters: d = [0, 1, 0], a = [1, 2, 3], a = [-%, Z, 0], path = (-3, -0.5) to (-0.742,
